GNU Octave

A high-level interactive language for numerical computations
Edition 4 for Octave version 4.4.1
August 2018

Free Your Numbers

John W. Eaton
David Bateman
Sgren Hauberg
Rik Wehbring

Copyright (© 1996, 1997, 1999, 2000, 2001, 2002, 2005, 2006, 2007, 2011, 2013, 2015, 2016,
2017, 2018 John W. Eaton.

This is the fourth edition of the Octave documentation, and is consistent with version 4.4.1
of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301-1307, USA.

Table of Contents

Preface 1
Acknowledgements 1
Citing Octave in Publications. e 5)
How You Can Contribute to Octave........ ... 6
Distribution 6

1 A Brief Introduction to Octave............................ 7
1.1 Running OCEavet e 7
1.2 Simple Examples 7

1.2.1 Elementary Calculations.......... ... 7
1.2.2 Creating a Matrixooi i e e 8
1.2.3 Matrix Arithmetic. ... 8
1.2.4 Solving Systems of Linear Equations.............ot 8
1.2.5 Integrating Differential Equations........... ... o it 9
1.2.6 Producing Graphical Output ... 10
1.2.7 Help and Documentationoiiiiiiiniiiiiii e 10
1.2.8 Editing What You Have Typedo 10
1.3 COnVENTIONS .« o ottt ettt et e e e e e 11
13,1 FOmtS. .o 11
1.3.2 Evaluation Notation......... ..o i 11
1.3.3 Printing Notationcoooii i e e 11
1.3.4 ErTor MeSSages . .« oo vttt ettt e 12
1.3.5 Format of Descriptionsouuiiiii e 12
1.3.5.1 A Sample Function Descriptiono i 12
1.3.5.2 A Sample Command Description..............ooiiiiiiiiiiaie .. 13

2 Getting Started.............. ... 15

2.1 Invoking Octave from the Command Line.............. o .. 15
2.1.1 Command Line Optionsuutiii i 15
2.1.2 Startup Files 18

2.2 Quitting OCtavet e 19

2.3 Commands for Getting Help..... ... i 20

2.4 Command Line Editing.........o i 25
2.4.1 Cursor Motion. . .o .v et e 25
2.4.2 Killing and Yanking 26
2.4.3 Commands for Changing Text, 27
2.4.4 Letting Readline Type for You......... .o, 27
2.4.5 Commands for Manipulating the History............ 28
2.4.6 Customizing readline.c.uuutiiintin i 31
2.4.7 Customizing the Prompt....... ... o i 32
2.4.8 Diary and Echo Commands.o, 33

2.5 How Octave Reports Errors e 35

ii

GNU Octave (version 4.4.1)

2.6 Executable Octave Programsot 36
2.7 Comments in Octave Programs......... 37
2.7.1 Single Line Commentsottt 37
2.7.2 Block Comments e 37
2.7.3 Comments and the Help System it 38
Data Types. ... 39
3.1 Built-in Data Types. ... e 39
3.1.1 Numeric ObjJects ... o.. oo 42
3.1.2 Missing Data. ... 43
3.1.3 String ObJects. .o eu it 43
3.1.4 Data Structure ObjJects. 43
3.1.5 Cell Array ODJectS .. vvvt ettt e e 44
3.2 User-defined Data Typesouuii e 44
3.3 ODbJECt SIZES. o ottt e 44
Numeric Data Types............cooiiiiiiiiii .. 47
A1 MaATICES . v vttt e 48
4.1.1 Empty Matriceso e o1
4.2 RAIZES . ettt 52
4.3 Single Precision Data Typeso 53
4.4 Tnteger Data Types. e 54
4.4.1 Integer Arithmetic. e 56
4.5 Bit Manipulations. e 57
4.6 Logical Values. e 59
4.7 Promotion and Demotion of Data Types.........c..coiiiiiiiiiiiii .. 61
4.8 Predicates for Numeric Objects. i 61
SErings. 67
5.1 Escape Sequences in String Constants, 67
5.2 Character ATTaYS. ...ttt ettt et ettt e e 68
5.3 Creating Strings.ottt e 69
5.3.1 Concatenating Stringsouuuiiitiiin i 70
5.3.2 Converting Numerical Data to Strings, 73
5.4 Comparing StIINgS .« .« ov vttt e 76
5.5 Manipulating Strings e 7
5.6 String CONVEISIONSttt ettt ettt et e 92
5.7 Character Class Functions........... ..o i 98
Data Containers..........., 101
6.1 STUCTUTES . o o ettt et e e e e 101
6.1.1 Basic Usage and Examplesooo i 101
6.1.2 SEructure ATTAYSottt e e 105
6.1.3 Creating Structuresot e 106
6.1.4 Manipulating Structures........... . .. i 109

6.1.5 Processing Data in Structurest 113

6.2 containers. VAttt e 114
6.3 Cell ATTayS .ottt 115
6.3.1 Basic Usage of Cell Arrays.o, 115
6.3.2 Creating Cell ATTayst e 116
6.3.3 Indexing Cell Arrayst e 119
6.3.4 Cell Arrays of Stringsottt 121
6.3.5 Processing Data in Cell Arrays ..., 122
6.4 Comma Separated Lists 123
6.4.1 Comma Separated Lists Generated from Cell Arrays.................... 124
6.4.2 Comma Separated Lists Generated from Structure Arrays............... 125

7 Variables......... 127
7.1 Global Variables 128
7.2 Persistent Variables 130
7.3 Status of Variables 132
8 EXPressions..............coiiiiiiiiiii 139
8.1 Index EXPressionst 139
8.1.1 Advanced Indexingt 141
8.2 Calling Functionsottt 145
8.2.1 Call by Valueo 146
8.2.2 RECUISION . .ottt 147
8.2.3 Accessvia Handle....... ... 148
8.3 Arithmetic Operatorsot e 149
8.4 Comparison OPeratorsttt 152
8.5 Boolean EXpPressions. 153
8.5.1 Element-by-element Boolean Operators.............. ..., 153
8.5.2 Short-circuit Boolean Operators 155
8.6 Assignment EXpressionsttt 156
8.7 Increment OPerators 159
8.8 Operator Precedenceot 159
9 Evaluation.............. 161
9.1 Calling a Function by its Name........ ... oo i i 162
9.2 Evaluation in a Different Context............ ... 163
10 Statements 165
10.1 The if Statement e 165
10.2 The switch Statement i 167
10.2.1 Notes for the C Programmer ..., 168
10.3 The while Statement i e 169
10.4 The do-until Statement 170
10.5 The for Statement 170
10.5.1 Looping Over Structure Elements.......... i i, 171
10.6 The break Statement.t e 172

10.7 The continue Statementttt e 173

iv GNU Octave (version 4.4.1)
10.8 The unwind_protect Statement........... 174
10.9 The try Statementt e 174
10.10 Continuation Lines.ooi i e 175

11 Functions and Scripts.................... 177
11.1 Introduction to Function and Script Files........... oL, 177
11.2 Defining Functions e 177
11.3 Multiple Return Values ... 180
11.4 Variable-length Argument Lists i i 188
11.5 Ignoring Arguments.ouu ittt e 190
11.6 Variable-length Return Lists i i 191
11.7 Returning from a Function........ i 192
11.8 Default Arguments.t e 193
11.9 Function Files. 193

11.9.1 Manipulating the Load Path......... i 196
11.9.2 Subfunctions......... .. 199
11.9.3 Private Functions i i 200
11.9.4 Nested Functions. ... e 200
11.9.5 Overloading and Autoloading.......... ..., 202
11.9.6 Function Locking. ... i 203
11.9.7 Function Precedenceo i 205
11.10 Seript Files ..o 205
11.10.1 Publish Octave Script Files........ ..o 207
11.10.2 Publishing Markup....... ... i 209
11.10.2.1 Using Publishing Markup in Script Files................... 209
11.10.2.2 Text Formatting ... 210
11.10.2.3 SeCtiONS . . oo vttt e 210
11.10.2.4 Preformatted Code....... ..o 211
11.10.2.5 Preformatted Text 211
11.10.2.6 Bulleted Listso 211
11.10.2.7 Numbered Lists 211
11.10.2.8 Including File Content o i, 212
11.10.2.9 Including Graphics............oiiiiiii i 212
11.10.2.10 Including URLSot e 212
11.10.2.11 Mathematical Equationso i, 213
11.10.2.12 HTML Markupoov e 213
11.10.2.13 LaTeX Markupooveiiii e 213

11.11 Function Handles, Anonymous Functions, Inline Functions................. 213
11.11.1 Function Handles 213
11.11.2 Anonymous Functions. 215
11.11.3 Inline Functions. e 216
1112 Commandso.u ettt e e e 217

11.13 Organization of Functions Distributed with Octave 217

12 Errors and Warnings 221
12.1 Handling Errors. 221
12.1.1 Raising Errorsot e 221
12.1.2 Catching Errors. 224
12.1.3 Recovering From Errors........ ... o i i 227
12.2 Handling Warnings. e 227
12.2.1 Issuing Warningsouu ettt 228
12.2.2 Enabling and Disabling Warnings............... ... o i, 235
13 Debugging 237
13.1 Entering Debug Mode. ... 237
13.2 Leaving Debug Mode. e 238
13.3 Breakpoints.ot e 238
13.4 Debug Mode. e 242
13.5 Call Stack ... e 243
13.6 Profiling 244
13.7 Profiler Example. 246
14 Input and Output........ 251
14.1 Basic Input and Output........ ..o 251
14.1.1 Terminal OQutpubt 251
14.1.1.1 Paging Screen Outputouoiiiiiiii e 254
14.1.2 Terminal Input....... ..o e 256
14.1.3 Simple File I/Oo 258
14.1.3.1 Saving Data on Unexpected Exits....... ... 271

14.2 C-Style I/O Functions. 273
14.2.1 Opening and Closing Files.......... .o 273
14.2.2 Simple OUutput . ..o e 275
14.2.3 Line-Oriented Input..........c i e 276
14.2.4 Formatted Outpub . ..o e 277
14.2.5 Output Conversion for Matrices, 279
14.2.6 Output Conversion Syntaxoeiiuiiiiiiiiii e, 279
14.2.7 Table of Output COnVErSiOnSouutrerie i iiie .. 280
14.2.8 Integer CONVErSIONSuutn ettt 281
14.2.9 Floating-Point Conversionscouuuiiiiiiiiiiiiiinenineann.. 282
14.2.10 Other Output Conversionsouuuiiiiiieeniienniieannn. 282
14.2.11 Formatted Input ... 283
14.2.12 Input Conversion SYNTAXottt 284
14.2.13 Table of Input Conversionsouuuieeiiriteeniieenneannn. 285
14.2.14 Numeric Input Conversions.o.eeiiiiiiiiiiieiiiinannn.. 286
14.2.15 String Input Conversionseeuutteaiie i 286
14.2.16 Binary I/O ..o 286
14.2.17 Temporary Files ... 289
14.2.18 End of File and Errorso 290
14.2.19 File Positioning 292

vi GNU Octave (version 4.4.1)

15 Plotting.o 295
15.1 Introduction to Plotting........ ... o i 295
15.2 High-Level Plotting e e 295

15.2.1 Two-Dimensional Plots....... o i i 295
15.2.1.1 Axis Configuration ... 323
15.2.1.2 Two-dimensional Function Plotting............ 327
15.2.1.3 Two-dimensional Geometric Shapes.............., 330

15.2.2 Three-Dimensional Plots o i i 331
15.2.2.1 Aspect Ratio...... .o 357
15.2.2.2 Three-dimensional Function Plotting..........., 358
15.2.2.3 Three-dimensional Geometric Shapes 362

15.2.3 Plot Annotations.t 363

15.2.4 Multiple Plots on One Page oo i i, 370

15.2.5 Multiple Plot Windows. ... e 372

15.2.6 Manipulation of Plot Objects. ... 372

15.2.7 Manipulation of Plot Windows i, 374

15.2.8 Use of the interpreter Property, 378
15.2.8.1 Degree Symbol 381

15.2.9 Printing and Saving Plotso 381

15.2.10 Interacting with Plots....... ... o 388

15.2.11 Test Plotting Functions i 389

15.3 Graphics Data Structures ... 390

15.3.1 Introduction to Graphics Structures............... ..., 390

15.3.2 Graphics ObJects. ...t 392
15.3.2.1 Creating Graphics Objects., 393
15.3.2.2 Handle Functions............ . i 396

15.3.3 Graphics Object Properties.......... .o 401
15.3.3.1 Root Figure Properties........... ... 402
15.3.3.2 Figure Properties....... ..o 403
15.3.3.3 Axes Properties ... 409
15.3.3.4 Line Properties. 416
15.3.3.5 Text Properties.ot e 418
15.3.3.6 Image Properties. ... 421
15.3.3.7 Patch Propertieso 423
15.3.3.8 Surface Properties......... ..o 427
15.3.3.9 Light Properties. 430
15.3.3.10 Uimenu Propertiescoooiiiiiiiiiiiiii i, 432
15.3.3.11 Uibuttongroup Properties, 433
15.3.3.12 Uicontextmenu Properties............ ..., 436
15.3.3.13 Uipanel Properties ... 437
15.3.3.14 Uicontrol Properties.o 439
15.3.3.15 Uitoolbar Properties. ... 442
15.3.3.16 Uipushtool Properties ..., 443
15.3.3.17 Uitoggletool Properties............ccooiiiiiiiiiiiiiiiii .. 445

15.3.4 Searching Propertiesoo i 447

15.3.5 Managing Default Properties........ i 448

15.4 Advanced Plottingo 449

15.4. 1 COlOTS .ottt 449

15.4.2 Line Styles ... 450
15.4.3 Marker Styles e 450
15.4.4 Callbackso 450
15.4.5 Application-defined Data....... ... 452
15.4.6 ODbJect GIOUDPS . .ottt ettt e e 453
15.4.6.1 Data Sources in Object Groups........oovvveiirineniinennnn... 458
15.4.6.2 Area Series.t e 458
15.4.6.3 Bar Series.oo i 459
15.4.6.4 Contour GIrOUPSttt e 460
15.4.6.5 Error Bar Series.......... i 461
15.4.6.6 Line Seriesottt e 461
15.4.6.7 QUIVET GIOUD -« vttt ettt ettt et et e 462
15.4.6.8 Scatter GIroUDutt et e 463
15.4.6.9 Stair GIroUD ...ttt 463
15.4.6.10 Stem Seriescounuuitin e 464
15.4.6.11 Surface Group.oouuit i e 465
15.4.7 Transform GroupS.o ottt et e 465
15.4.8 Graphics ToolKitst 466
15.4.8.1 Customizing Toolkit Behavior ot 466
15.4.8.2 Hardware vs. Software Rendering................ 467

16 Matrix Manipulation 469
16.1 Finding Elements and Checking Conditions.................cooiiiiiiio... 469
16.2 Rearranging Matricesot e 473
16.3 Special Utility Matrices e 483
16.4 Famous MatriCes.o e e 494
17 Arithmetic......, 503
17.1 Exponents and Logarithms........0 i i 503
17.2 Complex Arithmetico e 505
17.3 TrigONOMIEITY . o oottt e 506
17.4 Sums and Products 510
17.5 Utility Functions. e 512
17.6 Special Functions i 520
17.7 Rational Approximations.oiiiiiiiiiiiiii 532
17.8 Coordinate Transformations. 532
17.9 Mathematical Constantso i 534
18 Linear Algebra.......... 539
18.1 Techniques Used for Linear Algebra 539
18.2 Basic Matrix Functions.o 539
18.3 Matrix Factorizationso 549
18.4 Functions of a Matrixo e 562
18.5 Specialized SOIVErs 563

viii GNU Octave (version 4.4.1)

19 Vectorization and Faster Code Execution............. 577
19.1 Basic Vectorization.o e 577
19.2 Broadcasting.t 579

19.2.1 Broadcasting and Legacy Code ..., 582
19.3 Function Application. 582
19.4 Accumulation 587
19.5 JIT Compiler e 589
19.6 Miscellaneous Techniques.oou i e 590
19.7 EXAINPIES . 592

20 Nonlinear Equations...........................oo.... 593
20,1 SOIVETS . vttt 593
20.2 MINIMIZETS. . . oottt e 596

21 Diagonal and Permutation Matrices................... 601
21.1 Creating and Manipulating Diagonal /Permutation Matrices................. 601

21.1.1 Creating Diagonal Matrices., 602

21.1.2 Creating Permutation Matrices........... .o .. 602

21.1.3 Explicit and Implicit Conversions.cooviiiiiiiiienninnn.n. 603
21.2 Linear Algebra with Diagonal/Permutation Matrices........................ 604

21.2.1 Expressions Involving Diagonal Matrices....................oo it 604

21.2.2 Expressions Involving Permutation Matrices 605
21.3 Functions That Are Aware of These Matrices.............. ..., 606

21.3.1 Diagonal Matrix Functions i i 606

21.3.2 Permutation Matrix Functions........... i 606
21.4 Examples of USaget 606
21.5 Differences in Treatment of Zero Elements............., 607

22 Sparse Matrices...................... L. 609

22.1 Creation and Manipulation of Sparse Matrices................ 609
22.1.1 Storage of Sparse Matricest 609
22.1.2 Creating Sparse Matricest 610
22.1.3 Finding Information about Sparse Matrices............................ 616
22.1.4 Basic Operators and Functions on Sparse Matrices..................... 619

22.1.4.1 Sparse Functionso e 620
22.1.4.2 Return Types of Operators and Functions 620
22.1.4.3 Mathematical Considerations...............ccooiiiiiiiiiiie... 622

22.2 Linear Algebra on Sparse Matricesoouiiiiiit i 630

22.3 TIterative Techniques Applied to Sparse Matricescoviia... 639

22.4 Real Life Example using Sparse Matrices, 647

23 Numerical Integration.................................. 651
23.1 Functions of One Variable....... 651
23.2 Orthogonal Collocationt 660

23.3 Functions of Multiple Variables.......... ... i 660

24 Differential Equations 669
24.1 Ordinary Differential Equations i i 669
24.1.1 Matlab-compatible SOlvers......... ... 671

24.2 Differential-Algebraic Equations............ ... i 679
25 Optimization i, 689
25.1 Linear Programmingoouuiiiiiiii i 689
25.2 Quadratic Programming....... ... e 695
25.3 Nonlinear Programming.......... ...t 697
25.4 Linear Least SQUATeSttt e 699
26 Statistics............... . 703
26.1 Descriptive Statistics.o 703
26.2 Basic Statistical Functionso 711
26.3 Correlation and Regression Analysis............cooiiiiiiiiiiiiiiiin.. 713
26.4 Distributions.o 715
26.5 Random Number Generation........... ..o, 716
2T St 719
27.1 Set Operationsttt e 719
28 Polynomial Manipulations.............................. 723
28.1 Evaluating Polynomials 723
28.2 Finding Roots 724
28.3 Products of Polynomials 725
28.4 Derivatives / Integrals / Transforms............. oo, 728
28.5 Polynomial Interpolation.......... i i 729
28.6 Miscellaneous Functions.o i 738
29 Interpolation 741
29.1 One-dimensional Interpolation......... i 741
29.2 Multi-dimensional Interpolation i 745
30 Geometry 751
30.1 Delaunay Triangulation 751
30.1.1 Plotting the Triangulation......... o i i, 753
30.1.2 Identifying Points in Triangulation oot 756

30.2 Voronoi Diagrams.ooiiiii 758
30.3 Convex Hull 762
30.4 Interpolation on Scattered Data.......... ... 764

31 Signal Processing L. 767

X GNU Octave (version 4.4.1)

32 Image Processing 781
32.1 Loading and Saving Imagest 781
32.2 Displaying Images. 787
32.3 Representing Images e 789
32.4 Plotting on top of IMagesttt e 799
32.5 Color COnVErSIONottt ettt e e et e e 800

33 Audio Processing 803
33.1 Audio File Utilities. o.oo e 803
33.2 Audio Device Information.......... ... i 804
33.3 Audio Player. 805

33.3.1 Playback.o 805
33.3.2 Properties. ..o e 806
33.4 Audio Recorder 806
33.4.1 RecOording. 807
33.4.2 Data Retrieval ... 807
33.4.3 Properties. ..o e 808
33.5 Audio Data Processing...... ... 808

34 Object Oriented Programming......................... 811
34.1 Creating a Classttt 811
34.2 Class Methodso e 813
34.3 Indexing ODbJectS.t e 816

34.3.1 Defining Indexing And Indexed Assignment............................ 816
34.3.2 Indexed Assignment Optimization.......... i 820
34.4 Overloading Objects 821
34.4.1 Function Overloading ... 821
34.4.2 Operator Overloadingo, 822
34.4.3 Precedence of Objectso 823
34.5 Inheritance and Aggregation 824
34.6 classderl Classesottt e 828
34.6.1 Creating a classdef Class ...t 829
34.6.2 Properties. ..o e 830
34.6.3 Methodst 831
34.6.4 TInheritance. e 833
34.6.5 Value Classes vs. Handle Classes ..., 833

35 GUI Development................... 835
35.1 I/O DIalogs . . .ottt 835
30.2 Progress Bar. 842
35.3 UL Elementsoooiiiii e 842
35.4 GUI Utility Functions......... .o i e 848

35.5 User-Defined Preferences i 850

36 System Utilities.......... L. 853
36.1 Timing Utilities.ottt e 853
36.2 Filesystem Utilities. 864
36.3 File Archiving Utilitiesooi i e 873
36.4 Networking Utilities. e 876

36.4.1 FTP ODbJects .« .vvintti i 876

36.4.2 URL Manipulationo 878

36.4.3 Base64 and Binary Data Transmission............., 879
36.5 Controlling SUDPIOCESSES . .« . v ettt e 880
36.6 Process, Group, and User IDs 888
36.7 Environment Variables..........cooii 888
36.8 Current Working Directoryo 889
36.9 Password Database Functionso i i 891
36.10 Group Database Functions. ... 892
36.11 System Information 892
36.12 Hashing Functions i 898

37 Packages........ ... 901
37.1 Installing and Removing Packages........ ... i .. 901
37.2 Using Packagesuuiiii 905
37.3 Administrating Packages 905
37.4 Creating Packages. 905

37.4.1 The DESCRIPTION File.iuuiiii e 907
3742 The INDEX Fileo e 909
37.4.3 PKG_ADD and PKG_DEL Directivescoiiiiiiiiiiinan... 910
37.4.4 Missing COMPONENES .« . .. v vttt ettt et 910

Appendix A External Code Interface..................... 913

AL OCt-Files . .ot 914
A.1.1 Getting Started with Oct-Files....... ... o i 914
A.1.2 Matrices and Arrays in Oct-Files........... ... i, 917
A.1.3 Character Strings in Oct-Files........ ... i, 920
A.1.4 Cell Arrays in Oct-Files.o e 922
A. 1.5 Structures in Oct-Files. e 922
A.1.6 Sparse Matrices in Oct-Files 924

A.1.6.1 Array and Sparse Class Differences................. 924
A.1.6.2 Creating Sparse Matrices in Oct-Files 925
A.1.6.3 Using Sparse Matrices in Oct-Files.......... 928
A.1.7 Accessing Global Variables in Oct-Files 929
A.1.8 Calling Octave Functions from Oct-Files, 929
A.1.9 Calling External Code from Oct-Files.......... 931
A.1.10 Allocating Local Memory in Oct-Files......... 933
A.1.11 Input Parameter Checking in Oct-Files......... 933
A.1.12 Exception and Error Handling in Oct-Files............... 935
A.1.13 Documentation and Testing of Oct-Files oL, 936
A2 Mex-Files. .o 937

A.2.1 Getting Started with Mex-Files i i 937

xii GNU Octave (version 4.4.1)

A.2.2 Working with Matrices and Arrays in Mex-Files........................ 939

A.2.3 Character Strings in Mex-Files.......... ... i 941

A.2.4 Cell Arrays with Mex-Files.o i 942

A.2.5 Structures with Mex-Files........ 943

A.2.6 Sparse Matrices with Mex-Files 945

A.2.7 Calling Other Functions in Mex-Files.................oiiiiiiiiin.. 948

A.3 Standalone Programs.......... ... 949
A4 JavaInterface 953
A.4.1 Making Java Classes Available......... i i 953

A.4.2 How to use Java from within Octave 954

A.4.3 Passing parameters tothe JVMo o 956

A.4.4 Java Interface Functions i 957
Appendix B Test and Demo Functions 965
Bl Test FUNCtIONS. . ..o e e 965
B.2 Demonstration Functions ... e 973
Appendix C Obsolete Functions........................... 977
Appendix D Known Causes of Trouble................... 981
D.1 Actual Bugs We Haven’t Fixed Yet ... 981
D.2 Reporting Bugs. ..o 981
D.2.1 Have You Found a Bug? ... o 981

D.2.2 Where to Report Bugs. 982

D.2.3 How to Report Bugs. ...ttt e 982

D.2.4 Sending Patches for Octave i i 983

D.3 How To Get Help with Octave.......... 984
D.4 How to Distinguish Between Octave and Matlab 984
Appendix E Installing Octave............................. 987
E.1 Build Dependenciest 987
E.1.1 Obtaining the Dependencies Automatically 987

E.1.2 Build ToolS 987

E.1.3 External Packages 988

E.2 Running Configure and Make i 990
E.3 Compiling Octave with 64-bit Indexing.......... ... i .. 995
E.4 Installation Problems i 997
Appendix F Grammar and Parser....................... 1001
F.l KeywWords. ..o 1001

F L Parser . . oo 1001

Appendix G GNU GENERAL PUBLIC LICENSE 1003

Concept Index 1015

Function Index

Operator Index

Graphics Properties Index

Preface

Octave was originally intended to be companion software for an undergraduate-level text-
book on chemical reactor design being written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems. We
find that most students pick up the basics of Octave quickly, and are using it confidently in
just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in
several other undergraduate and graduate courses in the Chemical Engineering Department
at the University of Texas, and the math department at the University of Texas has been
using it for teaching differential equations and linear algebra as well. More recently, Octave
has been used as the primary computational tool for teaching Stanford’s online Machine
Learning class (ml-class.org) taught by Andrew Ng. Tens of thousands of students
participated in the course.

If you find Octave useful, please let us know. We are always interested to find out how
Octave is being used.

Virtually everyone thinks that the name Octave has something to do with music, but
it is actually the name of one of John W. Eaton’s former professors who wrote a famous
textbook on chemical reaction engineering, and who was also well known for his ability
to do quick ‘back of the envelope’ calculations. We hope that this software will make it
possible for many people to do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix G [Copying], page 1003). You are also encouraged to
help make Octave more useful by writing and contributing additional functions for it, and
by reporting any problems you may have.

Acknowledgements

Many people have contributed to Octave’s development. The following people have helped
code parts of Octave or aided in various other ways (listed alphabetically).

Ben Abbott Drew Abbot NVS Abhilash
Andy Adler Adam H. Aitkenhead Joakim Andén
Giles Anderson Joel Andersson Lachlan Andrew
Pedro Angelo Damjan Angelovski Muthiah Annamalai
Markus Appel Branden Archer Willem Atsma
Marco Atzeri Ander Aurrekoetxea Shai Ayal

Sahil Badyal Jeff Bai Roger Banks
Ben Barrowes Alexander Barth David Bateman
Heinz Bauschke Miguel Bazdresch Julien Bect
Stefan Beller Roman Belov Markus Bergholz
Karl Berry Atri Bhattacharya Ethan Biery

David Billinghurst Don Bindner Jakub Bogusz

ml-class.org

Moritz Borgmann
John Bradshaw
Remy Bruno

Marco Caliari

Juan Pablo Carbajal
Larrie Carr

Marco Cecchetti
Albert Chin-A-Young
Catalin Codreanu
Andre da Costa Barros
Richard Crozier
Jacob Dawid
Thomas D. Dean
Fabian Deutsch
Vivek Dogra

Carné Draug

John W. Eaton

Paul Eggert

Garrett Euler
Francesco Faccio
Stephen Fegan
David Finkel

Jose Daniel Munoz Frias
Eduardo Gallestey
Driss Ghaddab
Michele Ginesi
Michael D. Godfrey
Tomislav Goles
Alexander Graf
Etienne Grossmann
Vaibhav Gupta
Patrick Hacker
Benjamin Hall
Sgren Hauberg
Daniel Heiserer
Stefan Hepp

Israel Herraiz
Roman Hodek

Tom Holroyd

Craig Hudson

John Hunt

Alan W. Irwin
Vytautas Jancauskas
Robert Jenssen
Heikki Junes

Jarkko Kaleva

Lute Kamstra

Paul Boven

Marcus Brinkmann
Clemens Buchacher
Daniel Calvelo
Jean-Francois Cardoso
David Castelow
Corbin Champion
Sunghyun Cho

J. D. Cole

Martin Costabel

Jeff Cunningham
Jorge Barros de Abreu
Philippe Defert
Christos Dimitrakakis
John Donoghue
Sergey Dudoladov
Dirk Eddelbuettel
Stephen Eglen
Edmund Grimley Evans
Gunnar Farnebéack
Ramon Garcia Fernandez
Guillaume Flandin
Brad Froehle

Walter Gautschi
Eugenio Gianniti
Nicolo Giorgetti
Michael Goffioul
Keith Goodman
Michael C. Grant
David Grundberg
Peter Gustafson
William P. Y. Hadisoeseno
Alexander Hansen
Dave Hawthorne
Piotr Held

Martin Hepperle

Yozo Hida

A. Scottedward Hodel
David Hoover
Christopher Hulbert
Stefan Husmann
Allan Jacobs

Nicholas R. Jankowski
Cai Jianming
Matthias Juschke
Avinoam Kalma
Fotios Kasolis

GNU Octave (version 4.4.1)

Richard Bovey
Max Brister
Ansgar Burchard
John C. Campbell
Joao Cardoso
Vincent Cautaerts
Clinton Chee
Carsten Clark
Jacopo Corno
Michael Creel
Martin Dalecki
Carlo de Falco
Bill Denney
Pantxo Diribarne
David M. Doolin
Pascal A. Dupuis
Pieter Eendebak
Peter Ekberg
Rolf Fabian
Massimiliano Fasi
Torsten Finke
Colin Foster
Castor Fu

Klaus Gebhardt
Hartmut Gimpel
Arun Giridhar
Glenn Golden
Brian Gough
Steffen Groot
Kyle Guinn

Kai Habel
Jaroslav Hajek
Kim Hansen
Oliver Heimlich
Martin Helm
Jordi Gutiérrez Hermoso
Ryan Hinton
Richard Allan Holcombe
Kurt Hornik
Cyril Humbert
Teemu Ikonen
Geoff Jacobsen
Mats Jansson
Steven G. Johnson
Atsushi Kajita
Mohamed Kamoun
Thomas Kasper

Preface

Joel Keay

Lars Kindermann
Arno J. Klaassen
Geoffrey Knauth
Kacper Kowalik

Nir Krakauer

Artem Krosheninnikov
Ilya Kurdyukov
Philipp Kutin

Kai Labusch

Bill Lash

Friedrich Leisch
Thorsten Liebig

Timo Lindfors

Yu Liu

Sebastien Loisel

Emil Lucretiu

Colin Macdonald
Stefan Mahr

Ricardo Marranita
Makoto Matsumoto
Laurent Mazet

Julio Hoffimann Mendes
Stefan Miereis
Serviscope Minor
Stephen Montgomery-Smith
Amod Mulay

Victor Munoz

Nicholas Musolino
Todd Neal

Felipe G. Nievinski
Akira Noda

Victor Norton

Michael O’Brien
Thorsten Ohl

Valentin Ortega-Clavero
Janne Olavi Paanajarvi
Jason Alan Palmer
Rolando Pereira

Jim Peterson

Elias Pipping

Sergey Plotnikov

Orion Poplawski
Francesco Potorti
Jarno Rajahalme

Mumit Khan
Aaron A. King
Alexander Klein
Heine Kolltveit
Endre Kozma
Aravindh Krishnamoorthy
Piotr Krzyzanowski
Tetsuro Kurita
Miroslaw Kwasniak
Claude Lacoursiere
Dirk Laurie
Michael Leitner
Torsten Lilge
Benjamin Lindner
David Livings

Erik de Castro Lopo
Yi-Hong Lyu
James Macnicol
Rob Mahurin
Orestes Mas
Tatsuro Matsuoka
G. D. McBain

Ed Meyer

Petr Mikulik
Stefan Monnier
Antoine Moreau
Armin Miller
PrasannaKumar
Muralidharan
Markus Miitzel
Philip Nienhuis
Rick Niles

Kai Noda

Eric Norum

Cillian O’Driscoll
Kai T. Ohlhus

Luis F. Ortiz

Scott Pakin
Gabriele Pannocchia
Per Persson

Danilo Piazzalunga
Robert Platt

Tom Poage

Ondrej Popp
Konstantinos Poulios
Eduardo Ramos

Paul Kienzle

Erik Kjellson

Lasse Kliemann
Ken Kouno

Daniel Kraft
Oyvind Kristiansen
Volker Kuhlmann
Ben Kurtz

Rafael Laboissiere
Walter Landry
Maurice LeBrun
Johannes Leuschner
Jyh-miin Lin

Ross Lippert
Barbara Locsi
Massimo Lorenzin
Hoxide Ma
Jens-Uwe Mager
Alexander Mamonov
Axel Mathéi
Christoph Mayer
Ronald van der Meer
Thorsten Meyer
Mike Miller

Rafael Monteiro
Kai P. Mueller
Hannes Miller

Tain Murray

Carmen Navarrete

Al Niessner

Takuji Nishimura
Patrick Noffke
Krzesimir Nowak
Peter O’Gorman

Arno Onken

Carl Osterwisch

José Luis Garcia Pallero
Sylvain Pelissier
Primozz Peterlin
Nicholas Piper

Hans Ekkehard Plesser
Nathan Podlich

Jef Poskanzer

Tejaswi D. Prakash
Pooja Rao

James B. Rawlings
Joshua Redstone
Michael Reifenberger
Anthony Richardson
Sander van Rijn
Melvin Robinson
Andrew Ross

Joe Rothweiler
Kristian Rumberg
Toni Saarela

Mike Sander

Alois Schlogl
Sebastian Schops
Lasse Schuirmann
Daniel J. Sebald
Marko Seric

Andriy Shinkarchuck
John Smith

Peter L. Sondergaard
Quentin H. Spencer
Andreas Stahel
Ryan Starret

Jen Stewart
Thomas Stuart
John Swensen

Falk Tannhauser
Kris Thielemans
Andrew Thornton
Thomas Treichl
David Turner

José Vallet

James R. Van Zandt
Mihas Varantsou
Marco Vitetta
Andreas Weber

Rik Wehbring
Martin Weiser
Joachim Wiesemann
Georg Wiora

Sean Young
Johannes Zarl
Claudius Zingerli

Special thanks to the following people and organizations for supporting the development

of Octave:

e The United States Department of Energy, through grant number DE-FG02-04ER25635.
e Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the

Eric S. Raymond
Andy Register
Ernst Reissner
Jason Riedy

Petter Risholm
Dmitry Roshchin
Fabio Rossi

David Rorich

Ryan Rusaw

Juhani Saastamoinen
Ben Sapp

Michel D. Schmid
Nicol N. Schraudolph
Ludwig Schwardt
Dmitri A. Sergatskov
Ahsan Ali Shahid
Robert T. Short
Julius Smith
Riidiger Sonderfeld
Christoph Spiel
Richard Stallman
Brett Stewart
Jonathan Stickel
Bernardo Sulzbach
Daisuke Takago
Duncan Temple Lang
Georg Thimm

Olaf Till

Abhinav Tripathi
Frederick Umminger
Stefan van der Walt
Risto Vanhanen
Ivana Varekova
Daniel Wagenaar
Olaf Weber

Bob Weigel

Michael Weitzel
Alexander Wilms
Sahil Yadav

Michele Zaffalon
Michael Zeising
Alex Zvoleff

GNU Octave (version 4.4.1)

Balint Reczey
Lukas Reichlin
Jens Restemeier

E. Joshua Rigler
Matthew W. Roberts
Peter Rosin

Mark van Rossum
Kevin Ruland

Olli Saarela

Radek Salac
Aleksej Saushev
Julian Schnidder
Sebastian Schubert
Thomas L. Scofield
Vanya Sergeev
Baylis Shanks
Joseph P. Skudlarek
Shan G. Smith
Joerg Specht
David Spies
Russell Standish
Doug Stewart
Judd Storrs

Ivan Sutoris

Ariel Tankus
Matthew Tenny
Corey Thomasson
Christophe Tournery
Karsten Trulsen
Utkarsh Upadhyay
Peter Van Wieren
Gregory Vanuxem
Sébastien Villemot
Thomas Walter
Thomas Weber
Andreas Weingessel
David Wells

Joe Winegarden
Fook Fah Yap
Serhiy Zahoriya
Federico Zenith
Richard Zweig

Preface 5

Ohio Supercomputer Center.

The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,
CTS-9311420, CTS-8957123, and CNS-0540147.

The industrial members of the Texas-Wisconsin Modeling and Control Consortium
(TWMCC).

The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of
Wisconsin-Madison.

Digital Equipment Corporation, for an equipment grant as part of their External Re-
search Program.

Sun Microsystems, Inc., for an Academic Equipment grant.

International Business Machines, Inc., for providing equipment as part of a grant to
the University of Texas College of Engineering.

Texaco Chemical Company, for providing funding to continue the development of this
software.

The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

The State of Texas, for providing funding through the Texas Advanced Technology
Program under Grant No. 003658-078.

Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National
Laboratory, for registering the octave.org domain name.

James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-
ical and Biological Engineering.

Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and to

produce Octave.

Citing Octave in Publications

In view of the many contributions made by numerous developers over many years it is
common courtesy to cite Octave in publications when it has been used during the course of
research or the preparation of figures. The citation function can automatically generate
a recommended citation text for Octave or any of its packages. See the help text below on
how to use citation.

citation
citation package

Display instructions for citing GNU Octave or its packages in publications.

When called without an argument, display information on how to cite the core GNU
Octave system.

When given a package name package, display information on citing the specific named
package. Note that some packages may not yet have instructions on how to cite them.
The GNU Octave developers and its active community of package authors have in-
vested a lot of time and effort in creating GNU Octave as it is today. Please give
credit where credit is due and cite GNU Octave and its packages when you use them.

octave.org

6 GNU Octave (version 4.4.1)

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving new
problems, and to make your code freely available for others to use. See https://www.
octave.org/get-involved.html for detailed information.

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

Donations supporting Octave development may be made on the web at https://my.
fsf.org/donate/working-together/octave. These donations also help to support the
Free Software Foundation

If you’d prefer to pay by check or money order, you can do so by sending a check to the
FSF at the following address:

Free Software Foundation

51 Franklin Street, Suite 500
Boston, MA 02110-1335
USA

If you pay by check, please be sure to write “GNU Octave” in the memo field of your check.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to
improve Octave. See Appendix D [Trouble], page 981, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute
it on certain conditions. Octave is not, however, in the public domain. It is copyrighted
and there are restrictions on its distribution, but the restrictions are designed to ensure
that others will have the same freedom to use and redistribute Octave that you have. The
precise conditions can be found in the GNU General Public License that comes with Octave
and that also appears in Appendix G [Copying], page 1003.

To download a copy of Octave, please visit https://www.octave.org/download.html.

https://www.octave.org/get-involved.html
https://www.octave.org/get-involved.html
https://my.fsf.org/donate/working-together/octave
https://my.fsf.org/donate/working-together/octave
https://www.octave.org/download.html

1 A Brief Introduction to Octave

GNU Octave is a high-level language primarily intended for numerical computations. It is
typically used for such problems as solving linear and nonlinear equations, numerical linear
algebra, statistical analysis, and for performing other numerical experiments. It may also
be used as a batch-oriented language for automated data processing.

The current version of Octave executes in a graphical user interface (GUI). The GUI
hosts an Integrated Development Environment (IDE) which includes a code editor with
syntax highlighting, built-in debugger, documentation browser, as well as the interpreter
for the language itself. A command-line interface for Octave is also available.

GNU Octave is freely redistributable software. You may redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual, see Appendix G [Copying], page 1003.

This manual provides comprehensive documentation on how to install, run, use, and
extend GNU Octave. Additional chapters describe how to report bugs and help contribute
code.

This document corresponds to Octave version 4.4.1.

1.1 Running Octave

On most systems, Octave is started with the shell command ‘octave’. This starts the
graphical user interface. The central window in the GUI is the Octave command-line inter-
face. In this window Octave displays an initial message and then a prompt indicating it is
ready to accept input. If you have chosen the traditional command-line interface then only
the command prompt appears in the same window that was running a shell. In either case,
you can immediately begin typing Octave commands.

If you get into trouble, you can usually interrupt Octave by typing Control-C (written
C-c for short). C-c gets its name from the fact that you type it by holding down CTRL and
then pressing c. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP
signal, usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but before doing that, it
might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, we recommend that you try these examples to begin learning
Octave by using it. Lines marked like so, ‘octave:13>’) are lines you type, ending each
with a carriage return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Elementary Calculations

Octave can easily be used for basic numerical calculations. Octave knows about arithmetic
operations (+,-,*,/), exponentiation ("), natural logarithms/exponents (log, exp), and the
trigonometric functions (sin, cos, ...). Moreover, Octave calculations work on real or
imaginary numbers (i,j). In addition, some mathematical constants such as the base of

8 GNU Octave (version 4.4.1)

the natural logarithm (e) and the ratio of a circle’s circumference to its diameter (pi) are
pre-defined.

For example, to verify Euler’s Identity,

e = -1

type the following which will evaluate to -1 within the tolerance of the calculation.

octave:1> exp (i*pi)

1.2.2 Creating a Matrix

Vectors and matrices are the basic building blocks for numerical analysis. To create a new
matrix and store it in a variable so that you can refer to it later, type the command

octave:1> A = [1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Octave uses a comma
or space to separate entries in a row, and a semicolon or carriage return to separate one row
from the next. Ending a command with a semicolon tells Octave not to print the result of
the command. For example,

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of a variable, simply type the name of the variable at the prompt.
For example, to display the value stored in the matrix B, type the command

octave:3> B

1.2.3 Matrix Arithmetic

Octave uses standard mathematical notation with the advantage over low-level languages
that operators may act on scalars, vector, matrices, or N-dimensional arrays. For example,
to multiply the matrix A by a scalar value, type the command

octave:4> 2 x A

To multiply the two matrices A and B, type the command
octave:5> A x B

and to form the matrix product ATA, type the command

octave:6> A' * A

1.2.4 Solving Systems of Linear Equations

Systems of linear equations are ubiquitous in numerical analysis. To solve the set of linear
equations Ax = b, use the left division operator, ‘\’:

x=A\D
This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

Chapter 1: A Brief Introduction to Octave 9

A simple example comes from chemistry and the need to obtain balanced chemical
equations. Consider the burning of hydrogen and oxygen to produce water.

H,; + O, — H,0O

The equation above is not accurate. The Law of Conservation of Mass requires that the num-
ber of molecules of each type balance on the left- and right-hand sides of the equation. Writ-
ing the variable overall reaction with individual equations for hydrogen and oxygen one finds:

z1Hy + 2,05 — Hy0
H: 2x,4+0xy —2
O 0$1+2$2—>1

The solution in Octave is found in just three steps.
octave:1> A = [2, 0; 0, 2 1;
octave:2> b [2;117;
octave:3> x = A \ b

1.2.5 Integrating Differential Equations
Octave has built-in functions for solving nonlinear differential equations of the form

% = f(x,t), z(t =tg) = xg
For Octave to integrate equations of this form, you must first provide a definition of the
function f(x,t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right-
hand side function for an interesting pair of nonlinear differential equations. Note that
while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:1> function xdot = f (x, t)

>

> r = 0.25;

> k =1.4;

> a 1.5;

> b 0.16;

> ¢ =0.9;

> d = 0.8;

>

> xdot(1l) = rkx(1)*(1 - x(1)/k) - a*xx(1)*x(2)/(1 + b*x(1));
> xdot(2) = cxaxx(1)*x(2)/(1 + b*x(1)) - d*x(2);

>
> endfunction

Given the initial condition
octave:2> x0 = [1; 2];

and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)

octave:3> t = linspace (0, 50, 200)';

10 GNU Octave (version 4.4.1)

it is easy to integrate the set of differential equations:
octave:4> x = lsode ("f", x0, t);
The function 1sode uses the Livermore Solver for Ordinary Differential Equations, described

in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55—64.

1.2.6 Producing Graphical Output

To display the solution of the previous example graphically, use the command
octave:1> plot (t, x)

Octave will automatically create a separate window to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For
example,

print -dpdf foo.pdf
will create a file called foo.pdf that contains a rendering of the current plot in Portable
Document Format. The command

help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.7 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed
form is also available from the Octave prompt, because both forms of the documentation
are created from the same input file.

In order to get good help you first need to know the name of the command that you want
to use. The name of this function may not always be obvious, but a good place to start is to
type help —-1list. This will show you all the operators, keywords, built-in functions, and
loadable functions available in the current session of Octave. An alternative is to search
the documentation using the lookfor function (described in Section 2.3 [Getting Help],
page 20).

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot
will display the help text for the plot function.
The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke

Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual, see Section 2.3 [Getting Help], page 20.

1.2.8 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, press Control-p (written C-p for short). Doing
this will normally bring back the previous line of input. C-n will bring up the next line of

Chapter 1: A Brief Introduction to Octave 11

input, C-b will move the cursor backward on the line, C-f will move the cursor forward on
the line, etc.

A complete description of the command line editing capability is given in this manual,
see Section 2.4 [Command Line Editing], page 25.

1.3 Conventions

This section explains the notation conventions that are used in this manual. You may want
to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
variables or function arguments appear in this font or form: first-number. Commands
that you type at the shell prompt appear in this font or form: ‘octave --no-init-file’.
Commands that you type at the Octave prompt sometimes appear in this font or form:
foo —-bar --baz. Specific keys on your keyboard appear in this font or form: RET.

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated
with ‘=’. For example:

sqrt (2)
= 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.
In some cases, matrix values that are returned by expressions are displayed like this

[1, 2; 3, 4] == [1, 3; 2, 4]
= [1, 0; 0, 1]

and in other cases, they are displayed like this
eye (3)

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘=’. For example:

rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 4], 7)

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. In this manual
the printed text resulting from an example is indicated by ¢ 4’. The value that is returned

12 GNU Octave (version 4.4.1)

by evaluating the expression is displayed with ‘=’ (1 in the next example) and follows on
a separate line.

printf ("foo %s\n", "bar")
- foo bar
=1

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line beginning with error:.

fieldnames ([1, 2; 3, 4])
error: fieldnames: Invalid input argument

1.3.5 Format of Descriptions

Functions and commands are described in this manual in a uniform format. The first line
of a description contains the name of the item followed by its arguments, if any. If there
are multiple ways to invoke the function then each allowable form is listed.

The description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

After all of the calling forms have been enumerated, the next line is a concise one-sentence
summary of the function.

After the summary there may be documentation on the inputs and outputs, examples
of function usage, notes about the algorithm used, and references to related functions.

Here is a description of an imaginary function foo:

Chapter 1: A Brief Introduction to Octave 13

foo (x)
foo (x, y)

foo (x,y, ...)
Subtract x from y, then add any remaining arguments to the result.

The input x must be a numeric scalar, vector, or array.
The optional input y defaults to 19 if it is not supplied.
Example:

foo (1, [3, 5], 3, 9)
= [14, 16 1]
foo (5)
= 14

More generally,

foo (w, x, y, ...)

x-w+y+ ...

See also: bar

Any parameter whose name contains the name of a type (e.g., integer or matrix) is
expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

1.3.5.2 A Sample Command Description

Commands are functions that may be called without surrounding their arguments in paren-
theses. Command descriptions have a format similar to function descriptions. For example,
here is the description for Octave’s diary command:

14 GNU Octave (version 4.4.1)

diary

diary on

diary off

diary filename

[status, diaryfile] = diary
Record a list of all commands and the output they produce, mixed together just as
they appear on the terminal.

Valid options are:

on Start recording a session in a file called diary in the current working
directory.
off Stop recording the session in the diary file.

filename Record the session in the file named filename.

With no input or output arguments, diary toggles the current diary state.

If output arguments are requested, diary ignores inputs and returns the current
status. The boolean status indicates whether recording is on or off, and diaryfile is
the name of the file where the session is stored.

See also: history, evalc.

15

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave ses-
sion, get help at the command prompt, edit the command line, and write Octave programs
that can be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any ar-
guments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’is a shorter
equivalent).

2.1.1 Command Line Options

Here is a complete list of the command line options that Octave accepts.

--built-in-docstrings-file filename
Specify the name of the file containing documentation strings for the built-in
functions of Octave. This value is normally correct and should only need to
specified in extraordinary situations.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to
print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

--debug-jit

Enable JIT compiler debugging and tracing.

-—doc-cache-file filename
Specify the name of the doc cache file to use. The value of filename specified
on the command line will override any value of 0CTAVE_DOC_CACHE_FILE found
in the environment, but not any commands in the system or user startup files
that use the doc_cache_file function.

-—echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when finished unless —-persist is also specified.

--exec-path path
Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that set
the built-in variable EXEC_PATH.

16 GNU Octave (version 4.4.1)

--gui Start the graphical user interface (GUI).

--help
-h Print short help message and exit.

--image-path path
Add path to the head of the search path for images. The value of path specified
on the command line will override any value of OCTAVE_IMAGE_PATH found in
the environment, but not any commands in the system or user startup files that
set the built-in variable IMAGE_PATH.

--info-file filename
Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that
use the info_file function.

--info-program program
Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found
in the environment, but not any commands in the system or user startup files
that use the info_program function.

-—interactive
-i Force interactive behavior. This can be useful for running Octave via a remote
shell command or inside an Emacs shell buffer.

--jit-compiler
Enable the JIT compiler used for accelerating loops.
--line-editing
Force readline use for command-line editing.
--no-gui Disable the graphical user interface (GUI) and use the command line interface

(CLI) instead. This is the default behavior, but this option may be useful to
override a previous --gui.

--no-history
-H Disable recording of command-line history.

--no-init-file

Don’t read the initialization files ~/.octaverc and .octaverc.
--no-init-path

Don’t initialize the search path for function files to include default locations.
--no-line-editing

Disable command-line editing.
--no-site-file

Don’t read the site-wide octaverc initialization files.
--no-window-system

-W Disable use of a windowing system including graphics. This forces a strictly
terminal-only environment.

Chapter 2: Getting Started 17

--norc
-f Don’t read any of the system or user initialization files at startup. This is

equivalent to using both of the options —-no-init-file and —-no-site-file
--path path

-p path Add path to the head of the search path for function files. The value of path
specified on the command line will override any value of OCTAVE_PATH found
in the environment, but not any commands in the system or user startup files
that set the internal load path through one of the path functions.

--persist
Go to interactive mode after ——eval or reading from a file named on the com-
mand line.

--silent

--quiet

-q Don’t print the usual greeting and version message at startup.

--texi-macros-file filename
Specify the name of the file containing Texinfo macros for use by makeinfo.

-—traditiomnal

--braindead
For compatibility with MATLAB, set initial values for user preferences to the
following values

PS1 = ">> "

pPs2 = "
beep_on_error = true
confirm_recursive_rmdir = false
crash_dumps_octave_core = false
disable_diagonal _matrix = true
disable_permutation_matrix = true
disable_range = true
fixed_point_format = true
history_timestamp_format_string = "%%-- %D %I:%M %p —-%%"
print_empty_dimensions = false
save_default_options = "-mat-binary"

0

struct_levels_to_print
and disable the following warnings

Octave:abbreviated-property-match
Octave:data-file-in-path
Octave:function-name-clash
Octave:possible-matlab-short-circuit-operator

Note that this does not enable the Octave:language-extension warning,
which you might want if you want to be told about writing code that works in
Octave but not MATLAB (see [warning], page 228, [warning_ids|, page 230).

--verbose
-V Turn on verbose output.

18 GNU Octave (version 4.4.1)

--version
-v Print the program version number and exit.

file Execute commands from file. Exit when done unless —-persist is also specified.

Octave also includes several functions which return information about the command line,
including the number of arguments and all of the options.

argv ()

Return the command line arguments passed to Octave.
For example, if you invoked Octave using the command
octave —--no-line-editing --silent

argv would return a cell array of strings with the elements -—no-line-editing and
--silent.

If you write an executable Octave script, argv will return the list of arguments passed
to the script. See Section 2.6 [Executable Octave Programs|, page 36, for an example
of how to create an executable Octave script.

program_name ()
Return the last component of the value returned by program_invocation_name.

See also: [program_invocation_name|, page 18.

program_invocation_name ()
Return the name that was typed at the shell prompt to run Octave.

If executing a script from the command line (e.g., octave foo.m) or using an ex-
ecutable Octave script, the program name is set to the name of the script. See
Section 2.6 [Executable Octave Programs|, page 36, for an example of how to create
an executable Octave script.

See also: [program_name|, page 18.

Here is an example of using these functions to reproduce the command line which invoked
Octave.
printf ("¥s", program_name ());
arg_list = argv ();
for i = l:nargin
printf (" %s", arg_list{il});
endfor
printf ("\n");
See Section 6.3.3 [Indexing Cell Arrays|, page 119, for an explanation of how to retrieve
objects from cell arrays, and Section 11.2 [Defining Functions|, page 177, for information
about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list.
These files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc
where octave-home is the directory in which Octave is installed (the default
is /usr/local). This file is provided so that changes to the default Octave

Chapter 2: Getting Started 19

environment can be made globally for all users at your site for all versions of
Octave you have installed. Care should be taken when making changes to this
file since all users of Octave at your site will be affected. The default file may
be overridden by the environment variable OCTAVE_SITE_INITFILE.

octave-home/share/octave/version/m/startup/octaverc

where octave-home is the directory in which Octave is installed (the default
is /usr/local), and version is the version number of Octave. This file is pro-
vided so that changes to the default Octave environment can be made glob-
ally for all users of a particular version of Octave. Care should be taken
when making changes to this file since all users of Octave at your site will
be affected. The default file may be overridden by the environment variable
OCTAVE_VERSION_INITFILE.

~/.octaverc

.octaverc

startup.m

This file is used to make personal changes to the default Octave environment.

This file can be used to make changes to the default Octave environment for a
particular project. Octave searches for this file in the current directory after it
reads ~/.octaverc. Any use of the cd command in the ~/.octaverc file will
affect the directory where Octave searches for .octaverc.

If you start Octave in your home directory, commands from the file
~/.octaverc will only be executed once.

This file is used to make personal changes to the default Octave environment. It
is executed for MATLAB compatibility, but ~/.octaverc is the preferred location
for configuration changes.

A message will be displayed as each of the startup files is read if you invoke Octave with
the --verbose option but without the —-silent option.

2.2 Quitting Octave

Shutdown is initiated with the exit or quit commands (they are equivalent). Similar

to startup,

Octave has a shutdown process that can be customized by user script files.

During shutdown Octave will search for the script file finish.m in the function load path.
Commands to save all workspace variables or cleanup temporary files may be placed there.
Additional functions to execute on shutdown may be registered with atexit.

exit

exit (status)

quit

quit (status)
Exit the current Octave session.

If the optional integer value status is supplied, pass that value to the operating system
as Octave’s exit status. The default value is zero.

When exiting, Octave will attempt to run the m-file finish.m if it exists. User
commands to save the workspace or clean up temporary files may be placed in that
file. Alternatively, another m-file may be scheduled to run using atexit.

20

GNU Octave (version 4.4.1)

See also: [atexit], page 20.

atexit (fcn)
atexit (fcn, flag)

2.3

Register a function to be called when Octave exits.
For example,

function last_words ()
disp ("Bye bye");

endfunction

atexit ("last_words");

will print the message "Bye bye" when Octave exits.

The additional argument flag will register or unregister fcn from the list of functions
to be called when Octave exits. If flag is true, the function is registered, and if flag
is false, it is unregistered. For example, after registering the function last_words
above,

atexit ("last_words", false);
will remove the function from the list and Octave will not call last_words when it
exits.
Note that atexit only removes the first occurrence of a function from the list, so if a

function was placed in the list multiple times with atexit, it must also be removed
from the list multiple times.

See also: [quit|, page 19.

Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc.
In addition, the documentation for individual user-written functions and variables is also
available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See
Section 11.9 [Function Files], page 193, for more information about how to document the
functions you write.

help
help

name
—list

help .

help

Display the help text for name.

For example, the command help help prints a short message describing the help
command.

Given the single argument --1list, list all operators, keywords, built-in functions,
and loadable functions available in the current session of Octave.

Given the single argument ., list all operators available in the current session of
Octave.

If invoked without any arguments, help displays instructions on how to access help
from the command line.

Chapter 2: Getting Started 21

The help command can provide information about most operators, but name must
be enclosed by single or double quotes to prevent the Octave interpreter from acting
on name. For example, help "+" displays help on the addition operator.

See also: [doc], page 21, [lookfor], page 21, [which], page 137, [info], page 22.

doc function_name

doc

Display documentation for the function function_name directly from an online version
of the printed manual, using the GNU Info browser.

If invoked without an argument, the manual is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at the rand node
in the online version of the manual.

Once the GNU Info browser is running, help for using it is available using the com-
mand C-h.

See also: [help], page 20.

lookfor str

lookfor -all str

[fcn, helplstr] = lookfor (str)

[fcn, helplstr] = lookfor ("-all", str)

Search for the string str in the documentation of all functions in the current function
search path.

By default, 1lookfor looks for str in just the first sentence of the help string for each
function found. The entire help text of each function can be searched by using the
"-all" argument. All searches are case insensitive.

When called with no output arguments, lookfor prints the list of matching functions
to the terminal. Otherwise, the output argument fcns contains the function names
and helplstr contains the first sentence from the help string of each function.

Programming Note: The ability of lookfor to correctly identify the first sentence
of the help text is dependent on the format of the function’s help. All Octave core
functions are correctly formatted, but the same can not be guaranteed for external
packages and user-supplied functions. Therefore, the use of the "-all" argument
may be necessary to find related functions that are not a part of Octave.

The speed of lookup is greatly enhanced by having a cached documentation file. See
doc_cache_create for more information.

See also: |help], page 20, [doc|, page 21, [which]|, page 137, [path]|, page 197,
[doc_cache_create], page 24.

To see what is new in the current release of Octave, use the news function.

news
news

package

Display the current NEWS file for Octave or an installed package.

When called without an argument, display the NEWS file for Octave.

When given a package name package, display the current NEWS file for that package.

See also: [ver|, page 895, [pkg], page 901.

22 GNU Octave (version 4.4.1)

info ()
Display contact information for the GNU Octave community.

warranty ()
Describe the conditions for copying and distributing Octave.

The following functions can be used to change which programs are used for displaying
the documentation, and where the documentation can be found.

val = info_file ()
old_val = info_file (new_val)
info_file (new_val, "local")
Query or set the internal variable that specifies the name of the Octave info file.

The default value is octave-home/info/octave.info, in which octave-home is the
root directory of the Octave installation. The default value may be overridden by the
environment variable OCTAVE_INFO_FILE, or the command line argument --info-
file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_program]|, page 22, [doc], page 21, [help], page 20, [makeinfo_program],
page 22.

val = info_program ()
old_val = info_program (new_val)
info_program (new_val, "local")
Query or set the internal variable that specifies the name of the info program to run.

The default value is octave-home/libexec/octave/version/exec/arch/info
in which octave-home is the root directory of the Octave installation, version
is the Octave version number, and arch is the system type (for example,
i686-pc-linux-gnu). The default value may be overridden by the environment
variable OCTAVE_INFO_PROGRAM, or the command line argument --info-program
NAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_file|, page 22, [doc|, page 21, [help], page 20, [makeinfo_program],
page 22.

val = makeinfo_program ()

old_val = makeinfo_program (new_val)

makeinfo_program (new_val, "local")
Query or set the internal variable that specifies the name of the program that Octave
runs to format help text containing Texinfo markup commands.

The default value is makeinfo.

Chapter 2: Getting Started 23

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [texi_macros_file], page 23, [info_file], page 22, [info_program]|, page 22, [doc],
page 21, [help], page 20.

val = texi_macros_file ()

old_val = texi_macros_file (new_val)

texi_macros_file (new_val, "local")
Query or set the internal variable that specifies the name of the file containing Tex-
info macros that are prepended to documentation strings before they are passed to
makeinfo.

The default value is octave-home/share/octave/version/etc/macros.texi, in
which octave-home is the root directory of the Octave installation, and version
is the Octave version number. The default value may be overridden by the
environment variable OCTAVE_TEXI_MACROS_FILE, or the command line argument
--texi-macros-file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [makeinfo_program]|, page 22.

val = doc_cache_file ()

old_val = doc_cache_file (new_val)

doc_cache_file (new_val, "local")
Query or set the internal variable that specifies the name of the Octave documentation
cache file.

A cache file significantly improves the performance of the lookfor command. The
default value is octave-home/share/octave/version/etc/doc-cache, in which
octave-home is the root directory of the Octave installation, and version is the Octave
version number. The default value may be overridden by the environment variable
OCTAVE_DOC_CACHE_FILE, or the command line argument --doc-cache-file FNAME.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [doc_cache_create], page 24, [lookfor|, page 21, [info_program], page 22,
[doc], page 21, [help], page 20, [makeinfo_program|, page 22.

See also: [lookfor|, page 21.

val = built_in_docstrings_file ()

old_val = built_in_docstrings_file (new_val)

built_in_docstrings_file (new_val, "local")
Query or set the internal variable that specifies the name of the file containing doc-
strings for built-in Octave functions.

The default value is octave-home/share/octave/version/etc/built-in-
docstrings, in which octave-home is the root directory of the Octave installation,

24

GNU Octave (version 4.4.1)

and version is the Octave version number. The default value may be overridden by
the environment variable OCTAVE_BUILT_IN_DOCSTRINGS_FILE, or the command
line argument --built-in-docstrings-file FNAME.

Note: This variable is only used when Octave is initializing itself. Modifying it during
a running session of Octave will have no effect.

val = suppress_verbose_help_message ()
old_val = suppress_verbose_help_message (new_val)
suppress_verbose_help_message (new_val, "local")

Query or set the internal variable that controls whether Octave will add additional
help information to the end of the output from the help command and usage messages
for built-in commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

The following functions are principally used internally by Octave for generating the docu-

mentation. They are documented here for completeness and because they may occasionally
be useful for users.

doc_cache_create (out_file, directory)
doc_cache_create (out_file)
doc_cache_create ()

Generate documentation cache for all functions in directory.

A documentation cache is generated for all functions in directory which may be a
single string or a cell array of strings. The cache is used to speed up the function
lookfor.

The cache is saved in the file out_file which defaults to the value doc-cache if not
given.

If no directory is given (or it is the empty matrix), a cache for built-in functions,
operators, and keywords is generated.

See also: [doc_cache_file], page 23, [lookfor|, page 21, [path], page 197.

[text, format] = get_help_text (name)

Return the raw help text of function name.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

See also: [get_help_text_from_file], page 24.

[text, format] = get_help_text_from_file (fname)

Return the raw help text from the file fname.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

See also: [get_help_text], page 24.

Chapter 2: Getting Started 25

text = get_first_help_sentence (name)

text = get_first_help_sentence (name, max_Ilen)

[text, status] = get_first_help_sentence (...)
Return the first sentence of a function’s help text.

The first sentence is defined as the text after the function declaration until either the
first period (".") or the first appearance of two consecutive newlines ("\n\n"). The
text is truncated to a maximum length of max_len, which defaults to 80.

The optional output argument status returns the status reported by makeinfo. If
only one output argument is requested, and status is nonzero, a warning is displayed.

As an example, the first sentence of this help text is

get_first_help_sentence ("get_first_help_sentence")
- ans = Return the first sentence of a function's help text.

2.4 Command Line Editing

Octave uses the GNU Readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. In
addition, all of the editing functions can be bound to different key strokes at the user’s
discretion. This manual assumes no changes from the default Emacs bindings. See the
GNU Readline Library manual for more information on customizing Readline and for a
complete feature list.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type
C-a, hold down CTRL and then press a. In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. To type M-u, hold
down the META key and press u. Depending on the keyboard, the META key may be labeled
ALT or even WINDOWS. If your terminal does not have a META key, you can still type Meta
characters using two-character sequences starting with ESC. Thus, to enter M-u, you would
type ESC u. The ESC character sequences are also allowed on terminals with real Meta keys.
In the following sections, Meta characters such as Meta-u are written as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.
C-f Move forward one character.
BACKSPACE

Delete the character to the left of the cursor.
DEL Delete the character underneath the cursor.
c-d Delete the character underneath the cursor.

M-f Move forward a word.

26 GNU Octave (version 4.4.1)

M-b Move backward a word.

C-a Move to the start of the line.

C-e Move to the end of the line.

C-1 Clear the screen, reprinting the current line at the top.

C—_

c-/ Undo the last action. You can undo all the way back to an empty line.

M-r Undo all changes made to this line. This is like typing the ‘undo’ command

enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the left and right arrow
keys in place of C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

The function clc will allow you to clear the screen from within Octave programs.

clc ()
home ()
Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking it back into the line. If the description for a command says that it ‘kills’ text,
then you can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to
the start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL
because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one
clean sweep. The kill ring is not line specific; the text that you killed on a previously typed
line is available to be yanked back later, when you are typing another line.

Chapter 2: Getting Started 27

2.4.3 Commands for Changing Text

The following commands can be used for entering characters that would otherwise have a
special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C—q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-TAB Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor,
also moving the cursor forward. If the cursor is at the end of the line, then
transpose the two characters before it.

M-t Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-1 Lowercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word

if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type for You

The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete
the names of commands and variables.

M-7 List the possible completions of the text before the cursor.

val = completion_append_char ()

old_val = completion_append_char (new_val)

completion_append_char (new_val, "local")
Query or set the internal character variable that is appended to successful command-
line completion attempts.

The default value is " " (a single space).

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

completion_matches (hint)
Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might be
controlling Octave and handling user input. The current command number is not
incremented when this function is called. This is a feature, not a bug.

28 GNU Octave (version 4.4.1)

2.4.5 Commands for Manipulating the History

Octave normally keeps track of the commands you type so that you can recall previous
commands to edit or execute them again. When you exit Octave, the most recent commands
you have typed, up to the number specified by the variable history_size, are saved in a
file. When Octave starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD

RET Accept the current line regardless of where the cursor is. If the line is non-
empty, add it to the history list. If the line was a history line, then restore the
history line to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M—< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving ‘down’ through the

history as necessary.

On most terminals, you can also use the up and down arrow keys in place of C-p and
C-n to move through the history list.

In addition to the keyboard commands for moving through the history list, Octave
provides three functions for viewing, editing, and re-running chunks of commands from the
history list.

history

history optl ...

h = history ()

h = history (optl, ...)
If invoked with no arguments, history displays a list of commands that you have
executed.

Valid options are:

n

-n Display only the most recent n lines of history.

-c Clear the history list.

-q Don’t number the displayed lines of history. This is useful for cutting and

pasting commands using the X Window System.

-r file Read the file file, appending its contents to the current history list. If the
name is omitted, use the default history file (normally ~/.octave_hist).

-w file Write the current history to the file file. If the name is omitted, use the
default history file (normally ~/.octave_hist).

Chapter 2: Getting Started 29

For example, to display the five most recent commands that you have typed without
displaying line numbers, use the command history -q 5.

If invoked with a single output argument, the history will be saved to that argument
as a cell string and will not be output to screen.

See also: [edit_history], page 29, [run_history], page 29.

edit_history
edit_history cmd_number
edit_history first last
Edit the history list using the editor named by the variable EDITOR.

The commands to be edited are first copied to a temporary file. When you exit
the editor, Octave executes the commands that remain in the file. It is often more
convenient to use edit_history to define functions rather than attempting to enter
them directly on the command line. The block of commands is executed as soon as
you exit the editor. To avoid executing any commands, simply delete all the lines
from the buffer before leaving the editor.

When invoked with no arguments, edit the previously executed command; With one
argument, edit the specified command cmd_number; With two arguments, edit the
list of commands between first and last. Command number specifiers may also be
negative where -1 refers to the most recently executed command. The following are
equivalent and edit the most recently executed command.

edit_history

edit_history -1
When using ranges, specifying a larger number for the first command than the last

command reverses the list of commands before they are placed in the buffer to be
edited.

See also: [run_history|, page 29, [history|, page 28.

run_history
run_history cmd_number
run_history first last

Run commands from the history list.

When invoked with no arguments, run the previously executed command;
With one argument, run the specified command cmd_number;

With two arguments, run the list of commands between first and last. Command
number specifiers may also be negative where -1 refers to the most recently executed
command. For example, the command

run_history
OR
run_history -1

executes the most recent command again. The command
run_history 13 169

executes commands 13 through 169.

30 GNU Octave (version 4.4.1)

Specifying a larger number for the first command than the last command reverses the
list of commands before executing them. For example:

disp (1)
disp (2)
run_history -1 -2
=

2

1

See also: [edit_history], page 29, [history], page 28.
Octave also allows you customize the details of when, where, and how history is saved.

val = history_save ()

old_val = history_save (new_val)

history_save (new_val, "local")
Query or set the internal variable that controls whether commands entered on the
command line are saved in the history file.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [history_control], page 30, [history_file], page 30, [history_size|, page 31,
[history_timestamp_format_string], page 31.

val = history_control ()

old_val = history_control (new_val)
Query or set the internal variable that specifies how commands are saved to the
history list.

The default value is an empty character string, but may be overridden by the envi-
ronment variable 0CTAVE_HISTCONTROL.

The value of history_control is a colon-separated list of values controlling how
commands are saved on the history list. If the list of values includes ignorespace,
lines which begin with a space character are not saved in the history list. A value of
ignoredups causes lines matching the previous history entry to not be saved. A value
of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups
causes all previous lines matching the current line to be removed from the history list
before that line is saved. Any value not in the above list is ignored. If history_
control is the empty string, all commands are saved on the history list, subject to
the value of history_save.

See also: |history_file], page 30, [history_size|, page 31, [history_timestamp_format_string] Jj
page 31, [history_save|, page 30.

val = history_file ()

old_val = history_file (new_val)
Query or set the internal variable that specifies the name of the file used to store
command history.

Chapter 2: Getting Started 31

The default value is ~/.octave_hist, but may be overridden by the environment
variable OCTAVE_HISTFILE.

See also: |history_size|, page 31, [history_save|, page 30, [history_timestamp_format_string] |

page 31.

val = history_size ()

old_val = history_size (new_val)
Query or set the internal variable that specifies how many entries to store in the
history file.
The default value is 1000, but may be overridden by the environment variable
OCTAVE_HISTSIZE.

See also: [history_file], page 30, [history_timestamp_format_string|, page 31,
[history_save|, page 30.

val = history_timestamp_format_string ()
old_val = history_timestamp_format_string (new_val)
history_timestamp_format_string (new_val, "local")
Query or set the internal variable that specifies the format string for the comment
line that is written to the history file when Octave exits.

The format string is passed to strftime. The default value is

"# Octave VERSION, %a %b %d %H:¥%M:%S %4Y %Z <USERGHOST>"
When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.
See also: [strftime], page 855, [history_file], page 30, [history_size|, page 31,
[history_save], page 30.

val = EDITOR ()

old_val = EDITOR (new_val)

EDITOR (new_val, "local")
Query or set the internal variable that specifies the default text editor.
The default value is taken from the environment variable EDITOR when Octave starts.
If the environment variable is not initialized, EDITOR will be set to "emacs".
When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [edit], page 194, [edit_history], page 29.

2.4.6 Customizing readline

Octave uses the GNU Readline library for command-line editing and history features. Read-
line is very flexible and can be modified through a configuration file of commands (See the
GNU Readline library for the exact command syntax). The default configuration file is
normally ~/.inputrec.

Octave provides two commands for initializing Readline and thereby changing the com-
mand line behavior.

32 GNU Octave (version 4.4.1)

readline_read_init_file (file)
Read the readline library initialization file file.

If file is omitted, read the default initialization file (normally ~/.inputrc).

See Section “Readline Init File” in GNU Readline Library, for details.

See also: [readline_re_read_init_file|, page 32.

readline_re_read_init_file ()
Re-read the last readline library initialization file that was read.

See Section “Readline Init File” in GNU Readline Library, for details.

See also: [readline_read_init_file|, page 31.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-
escaped special characters that are decoded as follows:

At’ The time.

‘\d’ The date.

“\n’ Begins a new line by printing the equivalent of a carriage return followed by a
line feed.

‘\s’ The name of the program (usually just ‘octave’).

\w’ The current working directory.

AW The basename of the current working directory.

“\u’ The username of the current user.

‘\h’ The hostname, up to the first <.’.

\H’ The hostname.

A#' The command number of this command, counting from when Octave starts.

A\ The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.

¢’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.

‘\nnn’ The character whose character code in octal is nnn.

AN A backslash.

val = PS1 ()

old_val = PS1 (new_val)

PS1 (new_val, "local")
Query or set the primary prompt string.
When executing interactively, Octave displays the primary prompt when it is ready
to read a command.

Chapter 2: Getting Started 33

The default value of the primary prompt string is 'octave:\#> '. To change it, use
a command like

PS1 ("\\u@\\H> ")

which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in
on the host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a
backslash into a double-quoted character string. See Chapter 5 [Strings|, page 67.

You can also use ANSI escape sequences if your terminal supports them. This can be
useful for coloring the prompt. For example,

PS1 ('\[\033[01;31m\]\s:\#> \[\033[0m\]")
will give the default Octave prompt a red coloring.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PS2], page 33, [PS4], page 33.

val = PS2 ()
old_val = PS2 (new_val)
PS2 (new_val, "local")
Query or set the secondary prompt string.

The secondary prompt is printed when Octave is expecting additional input to com-
plete a command. For example, if you are typing a for loop that spans several lines,
Octave will print the secondary prompt at the beginning of each line after the first.
The default value of the secondary prompt string is "> ".

When called from inside a function with the "local" option, the variable is changed

locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PS1], page 32, [PS4], page 33.

val = PS4 ()

old_val = PS4 (new_val)

PS4 (new_val, "local")
Query or set the character string used to prefix output produced when echoing com-
mands is enabled.

The default value is "+ ". See Section 2.4.8 [Diary and Echo Commands]|, page 33,
for a description of echoing commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [echol, page 34, [PS1], page 32, [PS2], page 33.

2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by
recording the input you type and the output that Octave produces in a separate file.

34

GNU Octave (version 4.4.1)

diary

diary on

diary off

diary filename

[status, diaryfile] = diary

Record a list of all commands and the output they produce, mixed together just as
they appear on the terminal.

Valid options are:

on Start recording a session in a file called diary in the current working
directory.
off Stop recording the session in the diary file.

filename Record the session in the file named filename.

With no input or output arguments, diary toggles the current diary state.

If output arguments are requested, diary ignores inputs and returns the current
status. The boolean status indicates whether recording is on or off, and diaryfile is
the name of the file where the session is stored.

See also: [history|, page 28, [evalc|, page 161.

9

Sometimes it is useful to see the commands in a function or script as they are being
evaluated. This can be especially helpful for debugging some kinds of problems.

echo
echo
echo
echo
echo
echo
echo

on

off

on all

off all

function on

function off

Control whether commands are displayed as they are executed.

Valid options are:

on Enable echoing of commands as they are executed in script files.

of f Disable echoing of commands as they are executed in script files.

on all Enable echoing of commands as they are executed in script files and
functions.

off all Disable echoing of commands as they are executed in script files and
functions.

function on
Enable echoing of commands as they are executed in the named function.

function off
Disable echoing of commands as they are executed in the named function.

With no arguments, echo toggles the current echo state.

See also: [PS4], page 33.

Chapter 2: Getting Started 35

2.5 How Octave Reports Errors
Octave reports two kinds of errors for invalid programs.

A parse error occurs if Octave cannot understand something you have typed. For exam-
ple, if you misspell a keyword,

octave:13> function y = f (x) y = x***2; endfunction
Octave will respond immediately with a message like this:

parse error:
syntax error

>>> function y = f (x) y = x***2; endfunction

~

For most parse errors, Octave uses a caret (‘°’) to mark the point on the line where it was
unable to make sense of your input. In this case, Octave generated an error message because
the keyword for exponentiation (**) was misspelled. It marked the error at the third ‘*’
because the code leading up to this was correct but the final ‘*’ was not understood.

Another class of error message occurs at evaluation time. These errors are called run-time
errors, or sometimes evaluation errors, because they occur when your program is being run,
or evaluated. For example, if after correcting the mistake in the previous function definition,

you type
octave:13> £ ()
Octave will respond with

error: ‘x' undefined near line 1 column 24
error: called from:
error: f at line 1, column 22

This error message has several parts, and gives quite a bit of information to help you locate
the source of the error. The messages are generated from the point of the innermost error,
and provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be
undefined near line 1 and column 24 of some function or expression. For errors occurring
within functions, lines are counted from the beginning of the file containing the function
definition. For errors occurring outside of an enclosing function, the line number indicates
the input line number, which is usually displayed in the primary prompt string.

The second and third lines of the error message indicate that the error occurred within
the function £. If the function £ had been called from within another function, for example,
g, the list of errors would have ended with one more line:

error: g at line 1, column 17

These lists of function calls make it fairly easy to trace the path your program took
before the error occurred, and to correct the error before trying again.

36 GNU Octave (version 4.4.1)

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts, using
the ‘“#!” script mechanism. You can do this on GNU systems and on many Unix systems?.

Self-contained Octave scripts are useful when you want to write a program which users
can invoke without knowing that the program is written in the Octave language. Octave
scripts are also used for batch processing of data files. Once an algorithm has been developed
and tested in the interactive portion of Octave, it can be committed to an executable script
and used again and again on new data files.

As a trivial example of an executable Octave script, you might create a text file named
hello, containing the following lines:

#! octave-interpreter—-name -qf
a sample Octave program
printf ("Hello, world!\n");

(where octave-interpreter-name should be replaced with the full path and name of your
Octave binary). Note that this will only work if ‘#!” appears at the very beginning of the
file. After making the file executable (with the chmod command on Unix systems), you can
simply type:

hello
at the shell, and the system will arrange to run Octave as if you had typed:

octave hello

The line beginning with ‘#!’ lists the full path and filename of an interpreter to be run,
and an optional initial command line argument to pass to that interpreter. The operating
system then runs the interpreter with the given argument and the full argument list of
the executed program. The first argument in the list is the full filename of the Octave
executable. The rest of the argument list will either be options to Octave, or data files, or
both. The ‘-qf’ options are usually specified in stand-alone Octave programs to prevent
them from printing the normal startup message, and to keep them from behaving differently
depending on the contents of a particular user’s “/.octaverc file. See Section 2.1 [Invoking
Octave from the Command Line], page 15.

Note that some operating systems may place a limit on the number of characters that
are recognized after ‘#!’. Also, the arguments appearing in a ‘#!’ line are parsed differently
by various shells/systems. The majority of them group all the arguments together in one
string and pass it to the interpreter as a single argument. In this case, the following script:

#! octave-interpreter-name -q -f # comment
is equivalent to typing at the command line:
octave "-q -f # comment"
which will produce an error message. Unfortunately, it is not possible for Octave to deter-

mine whether it has been called from the command line or from a ‘#!’ script, so some care
is needed when using the ‘#!” mechanism.

Note that when Octave is started from an executable script, the built-in function argv
returns a cell array containing the command line arguments passed to the executable Octave

1 The ‘#!” mechanism works on Unix systems derived from Berkeley Unix, System V Release 4, and some
System V Release 3 systems.

Chapter 2: Getting Started 37

script, not the arguments passed to the Octave interpreter on the ‘#!’ line of the script. For
example, the following program will reproduce the command line that was used to execute
the script, not ‘-qf’.

#! /bin/octave -qf
printf ("¥s", program_name ());
arg_list = argv Q;
for i = 1l:nargin

printf (" %s", arg_list{il});
endfor
printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and
which is NOT an executable part of the program. Comments can explain what the program
does, and how it works. Nearly all programming languages have provisions for comments,
because programs are typically hard to understand without them.

2.7.1 Single Line Comments

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or the
percent symbol ‘%’ and continues to the end of the line. Any text following the sharp sign
or percent symbol is ignored by the Octave interpreter and not executed. The following
example shows whole line and partial line comments.

function countdown

Count down for main rocket engines

disp (3);

disp (2);

disp (1);

disp ("Blast 0ff!"); # Rocket leaves pad
endfunction

2.7.2 Block Comments

Entire blocks of code can be commented by enclosing the code between matching ‘#{’ and
‘“#}’ or ‘%{" and ‘/%}’ markers. For example,

function quick_countdown
Count down for main rocket engines
disp (3);
#{
disp (2);
disp (1);
#3}
disp ("Blast Off!"); # Rocket leaves pad
endfunction

will produce a very quick countdown from '3' to "Blast Off" as the lines "disp (2);"
and "disp (1) ;" won’t be executed.

38 GNU Octave (version 4.4.1)

The block comment markers must appear alone as the only characters on a line (excepting
whitespace) in order to be parsed correctly.

2.7.3 Comments and the Help System

The help command (see Section 2.3 [Getting Help], page 20) is able to find the first block
of comments in a function and return those as a documentation string. This means that the
same commands used to get help on built-in functions are available for properly formatted
user-defined functions. For example, after defining the function £ below,

function xdot = f (x, t)

usage: f (x, t)

#

This function defines the right-hand
side functions for a set of nonlinear
differential equations.

r = 0.25;

endfunction
the command help f produces the output
usage: f (x, t)

This function defines the right-hand
side functions for a set of nonlinear
differential equations.
Although it is possible to put comment lines into keyboard-composed, throw-away Oc-
tave programs, it usually isn’t very useful because the purpose of a comment is to help you
or another person understand the program at a later time.

The help parser currently only recognizes single line comments (see Section 2.7.1 [Single
Line Comments|, page 37) and not block comments for the initial help text.

39

3 Data Types

All versions of Octave include a number of built-in data types, including real and complex
scalars and matrices, character strings, a data structure type, and an array that can contain
all data types.

It is also possible to define new specialized data types by writing a small amount of C++
code. On some systems, new data types can be loaded dynamically while Octave is running,
so it is not necessary to recompile all of Octave just to add a new type. See Appendix A
[External Code Interface|, page 913, for more information about Octave’s dynamic linking
capabilities. Section 3.2 [User-defined Data Types|, page 44, describes what you must do
to define a new data type for Octave.

typeinfo ()

typeinfo (expr)
Return the type of the expression expr, as a string.
If expr is omitted, return a cell array of strings containing all the currently installed
data types.

See also: [class|, page 39, [isa], page 39.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges, char-
acter strings, a data structure type, and cell arrays. Additional built-in data types may
be added in future versions. If you need a specialized data type that is not currently pro-
vided as a built-in type, you are encouraged to write your own user-defined data type and
contribute it for distribution in a future release of Octave.

The data type of a variable can be determined and changed through the use of the
following functions.

classname = class (obj)

class (s, id)

class (s, id, p, ...)
Return the class of the object obj, or create a class with fields from structure s and
name (string) id.

Additional arguments name a list of parent classes from which the new class is derived.
See also: [typeinfo|, page 39, [isa], page 39.

isa (obj, classname)
Return true if obj is an object from the class classname.

classname may also be one of the following class categories:
"float" Floating point value comprising classes "double" and "single".
"integer"

Integer value comprising classes (u)int8, (u)int16, (u)int32, (u)int64.
"numeric"

Numeric value comprising either a floating point or integer value.

40

cast

y:

GNU Octave (version 4.4.1)

If classname is a cell array of string, a logical array of the same size is returned,
containing true for each class to which obj belongs to.

See also: [class], page 39, [typeinfo], page 39.

(val, "type")
Convert val to data type type.

Both val and type are typically one of the following built-in classes:

"double"
"single"
"logical"
n Char“
"int8"
"int16"
"int32"
"int64"
"uint8"
"uinti6"
"uint32"
"uint64"

The value val may be modified to fit within the range of the new type.
Examples:

cast (-5, "uint8")
= 0

cast (300, "int8")
= 127

Programming Note: This function relies on the object val having a conversion method
named type. User-defined classes may implement only a subset of the full list of types
shown above. In that case, it may be necessary to call cast twice in order to reach the
desired type. For example, the conversion to double is nearly always implemented,
but the conversion to uint8 might not be. In that case, the following code will work

cast (cast (user_defined_val, "double"), "uint8")

See also: [typecast|, page 40, [int8], page 54, [uint8|, page 55, [int16], page 55, [uint16],
page 55, [int32], page 55, [uint32], page 55, [int64], page 55, [uint64], page 55, [double],
page 47, [single], page 53, [logical], page 60, [char|, page 71, [class], page 39, [typeinfo],
page 39.

typecast (x, "class")
Return a new array y resulting from interpreting the data of x in memory as data of
the numeric class class.

Both the class of x and class must be one of the built-in numeric classes:

Chapter 3: Data Types 41

"logical"

"char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uintie"
"uint32"
"uint64"
"double"
"single"

"double complex"
"single complex"

the last two are only used with class; they indicate that a complex-valued result is
requested. Complex arrays are stored in memory as consecutive pairs of real numbers.
The sizes of integer types are given by their bit counts. Both logical and char are
typically one byte wide; however, this is not guaranteed by C++. If your system is
IEEE conformant, single and double will be 4 bytes and 8 bytes wide, respectively.
"logical" is not allowed for class.

If the input is a row vector, the return value is a row vector, otherwise it is a column
vector.

If the bit length of x is not divisible by that of class, an error occurs.
An example of the use of typecast on a little-endian machine is

x = uint16 ([1, 65535]);
typecast (x, "uint8")
= [1, 0, 255, 255]

See also: [cast], page 40, [bitpack], page 41, [bitunpack|, page 42, [swapbytes]
page 41.

)

swapbytes (x)
Swap the byte order on values, converting from little endian to big endian and vice
versa.

For example:

swapbytes (uint16 (1:4))
= [256 512 768 1024]

See also: [typecast], page 40, [cast], page 40.
y = bitpack (x, class)

Return a new array y resulting from interpreting the logical array x as raw bit patterns
for data of the numeric class class.

class must be one of the built-in numeric classes:

42 GNU Octave (version 4.4.1)

"double"

"single"

"double complex"

"single complex"

"Char“

"int8"

"int16"

"int32"

"int64"

"uint8"

"uint16"

"uint32"

"uint64"
The number of elements of x should be divisible by the bit length of class. If it is
not, excess bits are discarded. Bits come in increasing order of significance, i.e., x(1)
is bit 0, x(2) is bit 1, etc.

The result is a row vector if x is a row vector, otherwise it is a column vector.
See also: [bitunpack], page 42, [typecast], page 40.

y = bitunpack (x)
Return a logical array y corresponding to the raw bit patterns of x.
x must belong to one of the built-in numeric classes:

"double"
"single"
"char"
"int8"
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"

The result is a row vector if x is a row vector; otherwise, it is a column vector.

See also: [bitpack], page 41, [typecast], page 40.
3.1.1 Numeric Objects

Octave’s built-in numeric objects include real, complex, and integer scalars and matrices.
All built-in floating point numeric data is currently stored as double precision numbers.
On systems that use the IEEE floating point format, values in the range of approximately
2.2251 x 1073% t0 1.7977 x 103%® can be stored, and the relative precision is approximately
2.2204 x 107!%. The exact values are given by the variables realmin, realmax, and eps,
respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It is
easy to extract individual rows, columns, or submatrices using a variety of powerful indexing
features. See Section 8.1 [Index Expressions]|, page 139.

Chapter 3: Data Types 43

See Chapter 4 [Numeric Data Types|, page 47, for more information.

3.1.2 Missing Data

It is possible to represent missing data explicitly in Octave using NA (short for “Not Avail-
able”). Missing data can only be represented when data is represented as floating point
numbers. In this case missing data is represented as a special case of the representation of

NA

NA (n)

NA (n, m)

NA (n, m k, ...)

NA (..., class)
Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
special constant used to designate missing values.
Note that NA always compares not equal to NA (NA != NA). To find NA values, use
the isna function.
When called with no arguments, return a scalar with the value ‘NA’.
When called with a single argument, return a square matrix with the dimension
specified.
When called with more than one scalar argument the first two arguments are taken as
the number of rows and columns and any further arguments specify additional matrix
dimensions.
The optional argument class specifies the return type and may be either "double" or
"single".
See also: [isnal, page 43.

isna (x)

Return a logical array which is true where the elements of x are NA (missing) values
and false where they are not.
For example:
isna ([13, Inf, NA, NaN])
= [0,0,1,0]1]

See also: [isnan], page 470, [isinf], page 470, [isfinite|, page 471.
3.1.3 String Objects

A character string in Octave consists of a sequence of characters enclosed in either double-
quote or single-quote marks. Internally, Octave currently stores strings as matrices of
characters. All the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings|, page 67, for more information.

3.1.4 Data Structure Objects

Octave’s data structure type can help you to organize related objects of different types.
The current implementation uses an associative array with indices limited to strings, but
the syntax is more like C-style structures.

See Section 6.1 [Structures], page 101, for more information.

44 GNU Octave (version 4.4.1)

3.1.5 Cell Array Objects
A Cell Array in Octave is general array that can hold any number of different data types.

See Section 6.3 [Cell Arrays|, page 115, for more information.

3.2 User-defined Data Types

Someday I hope to expand this to include a complete description of Octave’s mechanism
for managing user-defined data types. Until this feature is documented here, you will have
to make do by reading the code in the ov.h, ops.h, and related files from Octave’s src
directory.

3.3 Object Sizes

The following functions allow you to determine the size of a variable or expression. These
functions are defined for all objects. They return —1 when the operation doesn’t make
sense. For example, Octave’s data structure type doesn’t have rows or columns, so the
rows and columns functions return —1 for structure arguments.

ndims (a)
Return the number of dimensions of a.

For any array, the result will always be greater than or equal to 2. Trailing singleton
dimensions are not counted.

ndims (ones (4, 1, 2, 1))
= 3

See also: [size], page 45.
columns (a)
Return the number of columns of a.
See also: [rows|, page 44, [size], page 45, [length], page 45, [numel], page 44, [isscalar],
page 63, [isvector], page 63, [ismatrix], page 62.
rows (a)
Return the number of rows of a.

See also: [columns]|, page 44, [size], page 45, [length], page 45, [numel], page 44,
[isscalar], page 63, [isvector], page 63, [ismatrix|, page 62.

numel (a)
numel (a, idx1, idx2, ...)
Return the number of elements in the object a.
Optionally, if indices idx1, idx2, . .. are supplied, return the number of elements that
would result from the indexing
a(idx1, idx2, ...)
Note that the indices do not have to be scalar numbers. For example,
a=1;

b = ones (2, 3);
numel (a, b)

Chapter 3: Data Types 45

will return 6, as this is the number of ways to index with b. Or the index could be
the string ":" which represents the colon operator. For example,

a = ones (5, 3);
numel (a, 2, ":")

will return 3 as the second row has three column entries.
This method is also called when an object appears as lvalue with cs-list indexing, i.e.,
object{...} or object(...).field.
See also: [size|, page 45, [length], page 45, [ndims|, page 44.
length (a)
Return the length of the object a.

The length is 0 for empty objects, 1 for scalars, and the number of elements for
vectors. For matrix or N-dimensional objects, the length is the number of elements
along the largest dimension (equivalent to max (size (a))).

See also: [numel], page 44, [size|, page 45.

sz = size (a)
dim_sz = size (a, dim)

[rows, cols, ..., dim_N_sz] = size (...)
Return a row vector with the size (number of elements) of each dimension for the
object a.

When given a second argument, dim, return the size of the corresponding dimension.

With a single output argument, size returns a row vector. When called with multiple
output arguments, size returns the size of dimension N in the Nth argument. The
number of rows, dimension 1, is returned in the first argument, the number of columns,
dimension 2, is returned in the second argument, etc. If there are more dimensions
in a than there are output arguments, size returns the total number of elements in
the remaining dimensions in the final output argument.

Example 1: single row vector output

size ([1, 2; 3, 4; 5, 6])
= [3, 2]

Example 2: number of elements in 2nd dimension (columns)
size ([1, 2; 3, 4; 5, 6], 2)

= 2
Example 3: number of output arguments == number of dimensions
[nr, nc] = size ([1, 2; 3, 4; 5, 6])
= nr = 3
= nc = 2

Example 4: number of output arguments < number of dimensions
[nr, remainder] = size (ones (2, 3, 4, 5))
= nr = 2
= remainder = 60

See also: [numel|, page 44, [ndims|, page 44, [length], page 45, [rows|, page 44,
[columns], page 44, [size_equal], page 46, [common _size], page 471.

46 GNU Octave (version 4.4.1)

isempty (a)
Return true if a is an empty matrix (any one of its dimensions is zero).

See also: [isnull], page 46, [isa], page 39.

isnull (x)
Return true if x is a special null matrix, string, or single quoted string.
Indexed assignment with such a null value on the right-hand side should delete array
elements. This function is used in place of isempty when overloading the indexed
assignment method (subsasgn) for user-defined classes. isnull is used to distinguish
between these two cases:

A(D =11

and

X=1[1; A(D =X

In the first assignment, the right-hand side is [] which is a special null value. As

long as the index I is not empty, this code should delete elements from A rather than
perform assignment.

In the second assignment, the right-hand side is empty (because X is [1), but it is
not null. This code should assign the empty value to elements in A.

An example from Octave’s built-in char class demonstrates the interpreter behavior
when isnull is used correctly.

str = "Hello World";

nm = "Wally";

str(7:end) = nm # indexed assignment
= str = Hello Wally

str(7:end) = "" # indexed deletion

= str = Hello
See also: [isempty]|, page 46, [isindex], page 145.
sizeof (val)
Return the size of val in bytes.
See also: [whos|, page 132.
size_equal (a, b, ...)
Return true if the dimensions of all arguments agree.

Trailing singleton dimensions are ignored. When called with a single argument, or no
argument, size_equal returns true.

See also: [size|, page 45, [numel], page 44, [ndims|, page 44, [common_size], page 471.
squeeze (x)
Remove singleton dimensions from x and return the result.

Note that for compatibility with MATLAB, all objects have a minimum of two dimen-
sions and row vectors are left unchanged.

See also: [reshape], page 477.

47

4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may contain complex
values.

The simplest form of a numeric constant, a scalar, is a single number. Note that by
default numeric constants are represented within Octave by IEEE 754 double precision
(binary64) floating-point format (complex constants are stored as pairs of binary64 values).
It is, however, possible to represent real integers as described in Section 4.4 [Integer Data
Types|, page 54.

If the numeric constant is a real integer, it can be defined in decimal, hexadecimal,
or binary notation. Hexadecimal notation starts with ‘Ox’ or ‘0X’, binary notation starts
with ‘Ob’ or ‘OB’, otherwise decimal notation is assumed. As a consequence, ‘Ob’ is not a
hexadecimal number, in fact, it is not a valid number at all.

For better readability, digits may be partitioned by the underscore separator ‘_’, which is
ignored by the Octave interpreter. Here are some examples of real-valued integer constants,
which all represent the same value and are internally stored as binary64:

42 # decimal notation
0x2A # hexadecimal notation
0b101010 # binary notation
0b10_1010 # underscore notation

round (42.1) # also binary64

In decimal notation, the numeric constant may be denoted as decimal fraction or even
in scientific (exponential) notation. Note that this is not possible for hexadecimal or binary
notation. Again, in the following example all numeric constants represent the same value:

.105
1.05e-1
.00105e+2

Unlike most programming languages, complex numeric constants are denoted as the
sum of real and imaginary parts. The imaginary part is denoted by a real-valued numeric
constant followed immediately by a complex value indicator (‘i’, ‘j’, ‘I’, or ‘J’ which rep-
resents /—1). No spaces are allowed between the numeric constant and the complex value
indicator. Some examples of complex numeric constants that all represent the same value:

3 + 423

3 + 42j

3 + 421

3 + 427

3.0 + 42.0i

3.0 + 0x2Ai

3.0 + 0b10_10101
0.3el + 420e-1i

double (x)
Convert x to double precision type.

See also: [single|, page 53.

48 GNU Octave (version 4.4.1)

complex (x)
complex (re, im)
Return a complex value from real arguments.
With 1 real argument x, return the complex result x + 0i.

With 2 real arguments, return the complex result re + imi. complex can often be
more convenient than expressions such as a + bxi. For example:
complex ([1, 2], [3, 4])
= [1+3i 2+4i]

See also: [real], page 506, [imag], page 506, [iscomplex|, page 62, [abs], page 505, [arg],
page 505.

4.1 Matrices

It is easy to define a matrix of values in Octave. The size of the matrix is determined
automatically, so it is not necessary to explicitly state the dimensions. The expression

a=[1, 2; 3, 4]
12
“= 13 4

results in the matrix
Elements of a matrix may be arbitrary expressions, provided that the dimensions all
make sense when combining the various pieces. For example, given the above matrix, the
expression
[a, al

produces the matrix

ans =
1 2 1 2
3 4 3 4
but the expression
[a, 1]

produces the error
error: number of rows must match (1 != 2) near line 13, column 6
(assuming that this expression was entered as the first thing on line 13, of course).

Inside the square brackets that delimit a matrix expression, Octave looks at the sur-
rounding context to determine whether spaces and newline characters should be converted
into element and row separators, or simply ignored, so an expression like

a=1[12
34]
will work. However, some possible sources of confusion remain. For example, in the expres-
sion
[1-11]
the ‘=’ is treated as a binary operator and the result is the scalar 0, but in the expression
[1-1]

Chapter 4: Numeric Data Types 49

the ‘-’ is treated as a unary operator and the result is the vector [1, -1 1. Similarly, the
expression
[sin (pi)]
will be parsed as
[sin, (pi)]
and will result in an error since the sin function will be called with no arguments. To get

around this, you must omit the space between sin and the opening parenthesis, or enclose
the expression in a set of parentheses:

[(sin (pi)) 1
Whitespace surrounding the single quote character (‘'’, used as a transpose operator
and for delimiting character strings) can also cause confusion. Given a = 1, the expression
[1a']
results in the single quote character being treated as a transpose operator and the result is
the vector [1, 1], but the expression
[1a']
produces the error message

parse error:
syntax error

>> [1 a ']

~

because not doing so would cause trouble when parsing the valid expression
[a 'foo']
For clarity, it is probably best to always use commas and semicolons to separate matrix
elements and rows.

The maximum number of elements in a matrix is fixed when Octave is compiled. The
allowable number can be queried with the function sizemax. Note that other factors, such as
the amount of memory available on your machine, may limit the maximum size of matrices
to something smaller.

sizemax ()
Return the largest value allowed for the size of an array.

If Octave is compiled with 64-bit indexing, the result is of class int64, otherwise it is
of class int32. The maximum array size is slightly smaller than the maximum value
allowable for the relevant class as reported by intmax.

See also: [intmax], page 55.

When you type a matrix or the name of a variable whose value is a matrix, Octave
responds by printing the matrix in with neatly aligned rows and columns. If the rows of
the matrix are too large to fit on the screen, Octave splits the matrix and displays a header
before each section to indicate which columns are being displayed. You can use the following
variables to control the format of the output.

50 GNU Octave (version 4.4.1)

output_max_field_width
This function is obsolete and will be removed from a future version of Octave.

val = output_precision ()

old_val = output_precision (new_val)

output_precision (new_val, "local")
Query or set the internal variable that specifies the minimum number of significant
figures to display for numeric output.

Note that regardless of the value set for output_precision, the number of digits
of precision displayed is limited to 16 for double precision values and 7 for single
precision values.

When called from inside a function with the "local" option, the variable is changed

locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format|, page 252, [fixed_point_format]|, page 51.

It is possible to achieve a wide range of output styles by using different values of output_
precision and output_max_field_width. Reasonable combinations can be set using the
format function. See Section 14.1 [Basic Input and Output], page 251.

val = split_long_rows ()

old_val = split_long_rows (new_val)

split_long_rows (new_val, "local")
Query or set the internal variable that controls whether rows of a matrix may be split
when displayed to a terminal window.

If the rows are split, Octave will display the matrix in a series of smaller pieces, each
of which can fit within the limits of your terminal width and each set of rows is labeled
so that you can easily see which columns are currently being displayed. For example:

octave:13> rand (2,10)
ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 252.

Octave automatically switches to scientific notation when values become very large or
very small. This guarantees that you will see several significant figures for every value in

Chapter 4: Numeric Data Types 51

a matrix. If you would prefer to see all values in a matrix printed in a fixed point format,
you can set the built-in variable fixed_point_format to a nonzero value. But doing so is
not recommended, because it can produce output that can easily be misinterpreted.

val = fixed_point_format ()

old_val = fixed_point_format (new_val)

fixed_point_format (new_val, "local")
Query or set the internal variable that controls whether Octave will use a scaled
format to print matrix values.

The scaled format prints a scaling factor on the first line of output chosen such that
the largest matrix element can be written with a single leading digit. For example:

logspace (1, 7, 5)'
ans =

1.0e+07 *

.00000
.00003
.00100
.03162
1.00000

O O O O

Notice that the first value appears to be 0 when it is actually 1. Because of the
possibility for confusion you should be careful about enabling fixed_point_format.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format|, page 252, [output_precision], page 50.

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty matrices are
handled as described by Carl de Boor in An Empty Exercise, SIGNUM, Volume 25, pages
2-6, 1990 and C. N. Nett and W. M. Haddad, in A System-Theoretic Appropriate Realiza-
tion of the Empty Matrix Concept, IEEE Transactions on Automatic Control, Volume 38,
Number 5, May 1993. Briefly, given a scalar s, an m x n matrix M,,y,, and an m X n empty
matrix [],,xn (with either one or both dimensions equal to zero), the following are true:

+ 5 = [Jmxn

s + Hmxn = [lmxn
[loxm * Mimxn = [loxn
Mrn><n : ano = meo

[Jmxo - [Joxn = Omxn

By default, dimensions of the empty matrix are printed along with the empty matrix
symbol, ‘[]’. The built-in variable print_empty_dimensions controls this behavior.

52 GNU Octave (version 4.4.1)

val = print_empty_dimensions ()

old_val = print_empty_dimensions (new_val)

print_empty_dimensions (new_val, "local")
Query or set the internal variable that controls whether the dimensions of empty
matrices are printed along with the empty matrix symbol, ‘[]1’.

For example, the expression
zeros (3, 0)

will print
ans = [](3x0)

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 252.

Empty matrices may also be used in assignment statements as a convenient way to delete
rows or columns of matrices. See Section 8.6 [Assignment Expressions]|, page 156.

When Octave parses a matrix expression, it examines the elements of the list to determine
whether they are all constants. If they are, it replaces the list with a single matrix constant.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced elements. A range
expression is defined by the value of the first element in the range, an optional value for the
increment between elements, and a maximum value which the elements of the range will
not exceed. The base, increment, and limit are separated by colons (the ‘:’ character) and
may contain any arithmetic expressions and function calls. If the increment is omitted, it
is assumed to be 1. For example, the range

1:5
defines the set of values [1, 2, 3, 4, 5], and the range
1:3:5

defines the set of values [1, 4 1.

Although a range constant specifies a row vector, Octave does not normally convert range
constants to vectors unless it is necessary to do so. This allows you to write a constant like
1 : 10000 without using 80,000 bytes of storage on a typical 32-bit workstation.

A common example of when it does become necessary to convert ranges into vectors
occurs when they appear within a vector (i.e., inside square brackets). For instance, whereas

x=0:0.1:1;

defines x to be a variable of type range and occupies 24 bytes of memory, the expression
y=00:0.1:1];

defines y to be of type matrix and occupies 88 bytes of memory.

This space saving optimization may be disabled using the function disable_range.

Chapter 4: Numeric Data Types 53

val = disable_range ()

old_val = disable_range (new_val)

disable_range (new_val, "local")
Query or set the internal variable that controls whether ranges are stored in a special
space-efficient format.

The default value is true. If this option is disabled Octave will store ranges as full
matrices.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [disable_diagonal_matrix|, page 601, [disable_permutation_matrix],
page 601.

Note that the upper (or lower, if the increment is negative) bound on the range is not
always included in the set of values, and that ranges defined by floating point values can
produce surprising results because Octave uses floating point arithmetic to compute the
values in the range. If it is important to include the endpoints of a range and the number of
elements is known, you should use the linspace function instead (see Section 16.3 [Special
Utility Matrices|, page 483).

When adding a scalar to a range, subtracting a scalar from it (or subtracting a range
from a scalar) and multiplying by scalar, Octave will attempt to avoid unpacking the range
and keep the result as a range, too, if it can determine that it is safe to do so. For instance,
doing

a = 2x(1:1e7) - 1;

will produce the same result as 1:2:2e7-1, but without ever forming a vector with ten
million elements.

Using zero as an increment in the colon notation, as 1:0:1 is not allowed, because a
division by zero would occur in determining the number of range elements. However, ranges
with zero increment (i.e., all elements equal) are useful, especially in indexing, and Octave
allows them to be constructed using the built-in function ones. Note that because a range
must be a row vector, ones (1, 10) produces a range, while ones (10, 1) does not.

When Octave parses a range expression, it examines the elements of the expression to
determine whether they are all constants. If they are, it replaces the range expression with
a single range constant.

4.3 Single Precision Data Types

Octave includes support for single precision data types, and most of the functions in Octave
accept single precision values and return single precision answers. A single precision variable
is created with the single function.

single (x)
Convert x to single precision type.

See also: [double|, page 47.

54 GNU Octave (version 4.4.1)

for example:

sngl = single (rand (2, 2))
= sngl =
0.37569 0.92982
0.11962 0.50876
class (sngl)
= single
Many functions can also return single precision values directly. For example

ones (2, 2, "single")
zeros (2, 2, "single")
eye (2, 2, "single")
rand (2, 2, "single")
NaN (2, 2, "single")
NA (2, 2, "single")
Inf (2, 2, "single")

will all return single precision matrices.

4.4 Integer Data Types

Octave supports integer matrices as an alternative to using double precision. It is possible
to use both signed and unsigned integers represented by 8, 16, 32, or 64 bits. It should be
noted that most computations require floating point data, meaning that integers will often
change type when involved in numeric computations. For this reason integers are most
often used to store data, and not for calculations.

In general most integer matrices are created by casting existing matrices to integers.
The following example shows how to cast a matrix into 32 bit integers.
float = rand (2, 2)

= float = 0.37569 0.92982

0.11962 0.50876
integer = int32 (float)
= integer = 0 1
0 1

As can be seen, floating point values are rounded to the nearest integer when converted.
isinteger (x)
Return true if x is an integer object (int8, uint8, int16, etc.).

Note that isinteger (14) is false because numeric constants in Octave are double
precision floating point values.

See also: [isfloat], page 62, [ischar|, page 68, [islogical|, page 62, [isstring], page 68,
[isnumeric], page 62, [isa], page 39.

int8 (x)
Convert x to 8-bit integer type.

See also: [uint8], page 55, [int16], page 55, [uint16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

Chapter 4: Numeric Data Types 55

uint8 (x)
Convert x to unsigned 8-bit integer type.

See also: [int8], page 54, [int16], page 55, [uint16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

int16 (x)
Convert x to 16-bit integer type.

See also: [int8], page 54, [uint8], page 55, [uint16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

uint16 (x)
Convert x to unsigned 16-bit integer type.

See also: [int8], page 54, [uint8], page 55, [int16], page 55, [int32], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.

int32 (x)
Convert x to 32-bit integer type.
See also: [int8], page 54, [uint8], page 55, [int16], page 55, [uint16], page 55, [uint32],
page 55, [int64], page 55, [uint64], page 55.
uint32 (x)
Convert x to unsigned 32-bit integer type.
See also: [int8], page 54, [uint8|, page 55, [int16], page 55, [uint16], page 55, [int32],
page 55, [int64], page 55, [uint64], page 55.
int64 (x)
Convert x to 64-bit integer type.

See also: [int8], page 54, [uint8|, page 55, [int16], page 55, [uint16], page 55, [int32],
page 55, [uint32], page 55, [uint64], page 55.

uint64 (x)
Convert x to unsigned 64-bit integer type.

See also: [int8|, page 54, [uint8], page 55, [int16], page 55, [uint16], page 55, [int32],
page 55, [uint32], page 55, [int64], page 55.

intmax (type)
Return the largest integer that can be represented in an integer type.

The variable type can be

int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uinti16 unsigned 16-bit integer.

56 GNU Octave (version 4.4.1)

uint32 unsigned 32-bit integer.
uint64 unsigned 64-bit integer.
The default for type is int32.
See also: [intmin|, page 56, [flintmax], page 56.
intmin (type)
Return the smallest integer that can be represented in an integer type.
The variable type can be

int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uinti16 unsigned 16-bit integer.
uint32 unsigned 32-bit integer.
uint64 unsigned 64-bit integer.
The default for type is int32.

See also: [intmax]|, page 55, [flintmax]|, page 56.

flintmax ()

flintmax ("double")

flintmax ("single")
Return the largest integer that can be represented consecutively in a floating point
value.

The default class is "double", but "single" is a valid option. On IEEE 754 com-
patible systems, flintmax is 2% for "double" and 2% for "single".

See also: [intmax], page 55, [realmax], page 536, [realmin|, page 537.

4.4.1 Integer Arithmetic

While many numerical computations can’t be carried out in integers, Octave does support
basic operations like addition and multiplication on integers. The operators +, -, .*, and
./ work on integers of the same type. So, it is possible to add two 32 bit integers, but not
to add a 32 bit integer and a 16 bit integer.

When doing integer arithmetic one should consider the possibility of underflow and
overflow. This happens when the result of the computation can’t be represented using the
chosen integer type. As an example it is not possible to represent the result of 10 — 20
when using unsigned integers. Octave makes sure that the result of integer computations is
the integer that is closest to the true result. So, the result of 10 — 20 when using unsigned
integers is zero.

When doing integer division Octave will round the result to the nearest integer. This is

different from most programming languages, where the result is often floored to the nearest
integer. So, the result of int32 (5) ./ int32 (8) is 1.

Chapter 4: Numeric Data Types 57

idivide (x, y, op)
Integer division with different rounding rules.
The standard behavior of integer division such as a ./ b is to round the result to
the nearest integer. This is not always the desired behavior and idivide permits
integer element-by-element division to be performed with different treatment for the

fractional part of the division as determined by the op flag. op is a string with one
of the values:

"fix" Calculate a ./ b with the fractional part rounded towards zero.

"round" Calculate a ./ b with the fractional part rounded towards the nearest
integer.

"floor" Calculate a ./ b with the fractional part rounded towards negative infin-
ity.

"ceil" Calculate a ./ b with the fractional part rounded towards positive infin-
ity.

If op is not given it defaults to "fix". An example demonstrating these rounding
rules is

idivide (int8 ([-3, 3]), int8 (4), "fix")
= int8 ([0, 0])

idivide (int8 ([-3, 3]), int8 (4), "round")
= int8 ([-1, 11)

idivide (int8 ([-3, 3]), int8 (4), "floor")
= int8 ([-1, 01)

idivide (int8 ([-3, 3]), int8 (4), "ceil")
= int8 ([0, 1]1)

See also: [ldivide], page 150, [rdivide], page 151.

4.5 Bit Manipulations

Octave provides a number of functions for the manipulation of numeric values on a bit by
bit basis. The basic functions to set and obtain the values of individual bits are bitset
and bitget.

C = bitset (4, n)
C = bitset (4, n, val)
Set or reset bit(s) n of the unsigned integers in A.

val = 0 resets and val = 1 sets the bits. The least significant bit is n = 1. All variables
must be the same size or scalars.

dec2bin (bitset (10, 1))
= 1011
See also: [bitand|, page 58, [bitor|, page 58, [bitxor|, page 58, [bitget|, page 57,
[bitcmp], page 58, [bitshift], page 59, [intmax], page 55, [flintmax], page 56.

c = bitget (4, n)
Return the status of bit(s) n of the unsigned integers in A.

58 GNU Octave (version 4.4.1)

The least significant bit is n = 1.

bitget (100, 8:-1:1)
=011 0 0 1 0 O

See also: [bitand], page 58, [bitor], page 58, [bitxor|, page 58, [bitset], page 57,
[bitemp], page 58, [bitshift], page 59, [intmax], page 55, [flintmax], page 56.

The arguments to all of Octave’s bitwise operations can be scalar or arrays, except for
bitcmp, whose k argument must a scalar. In the case where more than one argument is an
array, then all arguments must have the same shape, and the bitwise operator is applied to
each of the elements of the argument individually. If at least one argument is a scalar and
one an array, then the scalar argument is duplicated. Therefore

bitget (100, 8:-1:1)
is the same as
bitget (100 * omnes (1, 8), 8:-1:1)

It should be noted that all values passed to the bit manipulation functions of Octave
are treated as integers. Therefore, even though the example for bitset above passes the
floating point value 10, it is treated as the bits [1, 0, 1, 0] rather than the bits of the
native floating point format representation of 10.

As the maximum value that can be represented by a number is important for bit manip-
ulation, particularly when forming masks, Octave supplies two utility functions: flintmax
for floating point integers, and intmax for integer objects (uint8, int64, etc.).

Octave also includes the basic bitwise ’and’, ’or’, and ’exclusive or’ operators.

bitand (x, y)
Return the bitwise AND of non-negative integers.

x, y must be in the range [0,intmax]

See also: [bitor|, page 58, [bitxor|, page 58, [bitset|, page 57, [bitget], page 57,
[bitcmp], page 58, [bitshift], page 59, [intmax], page 55, [flintmax], page 56.

bitor (x, y)
Return the bitwise OR of non-negative integers x and y.

See also: [bitor|, page 58, [bitxor], page 58, [bitset|, page 57, [bitget], page 57,
[bitcmp], page 58, [bitshift], page 59, [intmax], page 55, [flintmax], page 56.

bitxor (x, y)
Return the bitwise XOR of non-negative integers x and y.

See also: [bitand], page 58, [bitor], page 58, [bitset], page 57, [bitget], page 57,
[bitemp], page 58, [bitshift], page 59, [intmax], page 55, [flintmax], page 56.

The bitwise 'not’ operator is a unary operator that performs a logical negation of each
of the bits of the value. For this to make sense, the mask against which the value is negated
must be defined. Octave’s bitwise 'not’ operator is bitcmp.

Chapter 4: Numeric Data Types 59

bitcmp (4, k)
Return the k-bit complement of integers in A.
If k is omitted k = 1log2 (flintmax) + 1 is assumed.
bitcmp (7,4)
= 8
dec2bin (11)
= 1011
dec2bin (bitcmp (11, 6))
= 110100

See also: [bitand], page 58, [bitor], page 58, [bitxor], page 58, [bitset], page 57, [bitget],
page 57, [bitcmp]|, page 58, [bitshift], page 59, [flintmax], page 56.

Octave also includes the ability to left-shift and right-shift values bitwise.
bitshift (a, k)
bitshift (a, k, n)
Return a k bit shift of n-digit unsigned integers in a.
A positive k leads to a left shift; A negative value to a right shift.
If n is omitted it defaults to 64. n must be in the range [1,64].
bitshift (eye (3), 1)

OO[\)U
O NN O
N O O

bitshift (10, [-2, -1, O, 1, 2])

= 2 5 10 20 40
See also: [bitand], page 58, [bitor], page 58, [bitxor|, page 58, [bitset], page 57, [bitget],
page 57, [bitcmp], page 58, [intmax]|, page 55, [flintmax], page 56.

Bits that are shifted out of either end of the value are lost. Octave also uses arithmetic
shifts, where the sign bit of the value is kept during a right shift. For example:

bitshift (-10, -1)

= -5
bitshift (int8 (-1), -1)
= -1

Note that bitshift (int8 (-1), -1) is -1 since the bit representation of -1 in the int8
data typeis [1, 1, 1,1, 1,1, 1, 1].

4.6 Logical Values

Octave has built-in support for logical values, i.e., variables that are either true or false.
When comparing two variables, the result will be a logical value whose value depends on
whether or not the comparison is true.

The basic logical operations are &, |, and !, which correspond to “Logical And”, “Logical
Or”, and “Logical Negation”. These operations all follow the usual rules of logic.

60 GNU Octave (version 4.4.1)

It is also possible to use logical values as part of standard numerical calculations. In
this case true is converted to 1, and false to 0, both represented using double precision
floating point numbers. So, the result of truex22 - false/6 is 22.

Logical values can also be used to index matrices and cell arrays. When indexing with
a logical array the result will be a vector containing the values corresponding to true parts
of the logical array. The following example illustrates this.

data = [1, 2; 3, 4 1;
idx = (data <= 2);
data(idx)
= ans = [1; 2]
Instead of creating the idx array it is possible to replace data(idx) with data(data <=2)
in the above code.

Logical values can also be constructed by casting numeric objects to logical values, or
by using the true or false functions.

logical (x)
Convert the numeric object x to logical type.
Any nonzero values will be converted to true (1) while zero values will be converted
to false (0). The non-numeric value NaN cannot be converted and will produce an
€rror.

Compatibility Note: Octave accepts complex values as input, whereas MATLAB issues

aln error.

See also: [double], page 47, [single], page 53, [char|, page 71.

true (x)

true (n, m)

true (n, m k, ...)
Return a matrix or N-dimensional array whose elements are all logical 1.
If invoked with a single scalar integer argument, return a square matrix of the specified
size.
If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [false], page 60.

false (x)

false (n, m)

false (n, m k, ...)
Return a matrix or N-dimensional array whose elements are all logical 0.
If invoked with a single scalar integer argument, return a square matrix of the specified
size.

If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [true|, page 60.

Chapter 4: Numeric Data Types 61

4.7 Promotion and Demotion of Data Types

Many operators and functions can work with mixed data types. For example,

uint8 (1) + 1
= 2

where the above operator works with an 8-bit integer and a double precision value and
returns an 8-bit integer value. Note that the type is demoted to an 8-bit integer, rather
than promoted to a double precision value as might be expected. The reason is that if
Octave promoted values in expressions like the above with all numerical constants would
need to be explicitly cast to the appropriate data type like

uint8 (1) + uint8 (1)
= 2
which becomes difficult for the user to apply uniformly and might allow hard to find bugs
to be introduced. The same applies to single precision values where a mixed operation such
as
single (1) + 1
= 2

returns a single precision value. The mixed operations that are valid and their returned
data types are

Mixed Operation Result
double OP single single
double OP integer integer
double OP char double
double OP logical double
single OP integer integer
single OP char single
single OP logical single

The same logic applies to functions with mixed arguments such as

min (single (1), 0)
=0

where the returned value is single precision.
In the case of mixed type indexed assignments, the type is not changed. For example,

x = ones (2, 2);

x(1, 1) = single (2)
= x =2 1
1 1

where x remains of the double precision type.

4.8 Predicates for Numeric Objects

Since the type of a variable may change during the execution of a program, it can be
necessary to do type checking at run-time. Doing this also allows you to change the behavior
of a function depending on the type of the input. As an example, this naive implementation

62 GNU Octave (version 4.4.1)

of abs returns the absolute value of the input if it is a real number, and the length of the
input if it is a complex number.
function a = abs (%)
if (isreal (x))
a = sign (x) .* x;
elseif (iscomplex (x))
a = sqrt (real(x).”2 + imag(x)."2);
endif
endfunction

The following functions are available for determining the type of a variable.
isnumeric (x)
Return true if x is a numeric object, i.e., an integer, real, or complex array.
Logical and character arrays are not considered to be numeric.
See also: [isinteger|, page 54, [isfloat], page 62, [isreal], page 62, [iscomplex], page 62,

[ischar], page 68, [islogical], page 62, [isstring], page 68, [iscell], page 116, [isstruct],
page 109, [isa], page 39.

islogical (x)

isbool (x)
Return true if x is a logical object.
See also: [ischar|, page 68, [isfloat], page 62, [isinteger], page 54, [isstring], page 68,
[isnumeric], page 62, [isa], page 39.

isfloat (x)
Return true if x is a floating-point numeric object.
Objects of class double or single are floating-point objects.
See also: [isinteger], page 54, [ischar], page 68, [islogical], page 62, [isnumeric]|, page 62,
[isstring], page 68, [isa], page 39.

isreal (x)
Return true if x is a non-complex matrix or scalar.
For compatibility with MATLAB, this includes logical and character matrices.
See also: [iscomplex], page 62, [isnumeric|, page 62, [isa], page 39.
iscomplex (x)
Return true if x is a complex-valued numeric object.
See also: [isreal], page 62, [isnumeric|, page 62, [ischar|, page 68, [isfloat], page 62,
[islogical], page 62, [isstring], page 68, [isa], page 39.
ismatrix (a)
Return true if a is a 2-D array.

See also: [isscalar|, page 63, [isvector], page 63, [iscell], page 116, [isstruct], page 109,
[issparse], page 616, [isa], page 39.

Chapter 4: Numeric Data Types 63

isvector (x)
Return true if x is a vector.

A vector is a 2-D array where one of the dimensions is equal to 1. As a consequence
a 1x1 array, or scalar, is also a vector.

See also: [isscalar|, page 63, [ismatrix]|, page 62, [size], page 45, [rows]|, page 44,
[columns], page 44, [length], page 45.

isrow (x)
Return true if x is a row vector 1xN with non-negative N.

See also: [iscolumn]|, page 63, [isscalar], page 63, [isvector], page 63, [ismatrix],
page 62.

iscolumn (x)
Return true if x is a column vector Nx1 with non-negative N.

See also: [isrow], page 63, [isscalar|, page 63, [isvector|, page 63, [ismatrix]|, page 62.

isscalar (x)
Return true if x is a scalar.

See also: [isvector|, page 63, [ismatrix|, page 62.

issquare (x)
Return true if x is a square matrix.

See also: [isscalar|, page 63, [isvector], page 63, [ismatrix], page 62, [size], page 45.
issymmetric (4)
issymmetric (4, tol)

Return true if A is a symmetric matrix within the tolerance specified by tol.

The default tolerance is zero (uses faster code).

Matrix A is considered symmetric if norm (A - A.', Inf) / norm (4, Inf) < tol.

See also: [ishermitian], page 63, [isdefinite], page 63.
ishermitian (4)
ishermitian (4, tol)
Return true if A is Hermitian within the tolerance specified by tol.
The default tolerance is zero (uses faster code).
Matrix A is considered symmetric if norm (4 - A', Inf) / norm (4, Inf) < tol.
See also: [issymmetric], page 63, [isdefinite], page 63.
isdefinite (4)
isdefinite (4, tol)

Return 1 if A is symmetric positive definite within the tolerance specified by tol or 0
if A is symmetric positive semi-definite. Otherwise, return -1.

If tol is omitted, use a tolerance of 100 * eps * norm (4, "fro")

See also: [issymmetric|, page 63, [ishermitian]|, page 63.

64

GNU Octave (version 4.4.1)

isbanded (4, lower, upper)

Return true if A is a matrix with entries confined between lower diagonals below the
main diagonal and upper diagonals above the main diagonal.

lower and upper must be non-negative integers.

See also: [isdiag], page 64, [istril], page 64, [istriu], page 64, [bandwidth], page 540.

isdiag (4)

Return true if A is a diagonal matrix.

See also: [isbanded], page 64, [istril], page 64, [istriu], page 64, [diag], page 483,
[bandwidth], page 540.

istril (4)

Return true if A is a lower triangular matrix.
A lower triangular matrix has nonzero entries only on the main diagonal and below.

See also: [istriu], page 64, [isbanded], page 64, [isdiag], page 64, [tril], page 481,
[bandwidth], page 540.

istriu (4)

Return true if A is an upper triangular matrix.
An upper triangular matrix has nonzero entries only on the main diagonal and above.

See also: [isdiag|, page 64, [isbanded|, page 64, [istril], page 64, [triu], page 481,
[bandwidth], page 540.

isprime (x)

Return a logical array which is true where the elements of x are prime numbers and
false where they are not.
A prime number is conventionally defined as a positive integer greater than 1 (e.g.,
2, 3, ...) which is divisible only by itself and 1. Octave extends this definition to
include both negative integers and complex values. A negative integer is prime if its
positive counterpart is prime. This is equivalent to isprime (abs (x)).
If class (x) is complex, then primality is tested in the domain of Gaussian integers
(https://en.wikipedia.org/wiki/Gaussian_integer). Some non-complex inte-
gers are prime in the ordinary sense, but not in the domain of Gaussian integers. For
example, 5 = (1+2i) * (1 —2¢) shows that 5 is not prime because it has a factor other
than itself and 1. Exercise caution when testing complex and real values together in
the same matrix.
Examples:

isprime (1:6)

= [0, 1, 1, 0, 1, O]
isprime ([i, 2, 3, 5])
= [0, 0, 1, 0]

Programming Note: isprime is appropriate if the maximum value in x is not too
large (< lel5). For larger values special purpose factorization code should be used.
Compatibility Note: matlab does not extend the definition of prime numbers and will
produce an error if given negative or complex inputs.

See also: [primes]|, page 519, [factor], page 518, [gcd], page 518, [lem], page 518.

https://en.wikipedia.org/wiki/Gaussian_integer

Chapter 4: Numeric Data Types 65

If instead of knowing properties of variables, you wish to know which variables are
defined and to gather other information about the workspace itself, see Section 7.3 [Status
of Variables|, page 132.

67

5 Strings

A string constant consists of a sequence of characters enclosed in either double-quote or
single-quote marks. For example, both of the following expressions

"parrot"
'parrot’

represent the string whose contents are ‘parrot’. Strings in Octave can be of any length.

Since the single-quote mark is also used for the transpose operator (see Section 8.3
[Arithmetic Ops|, page 149) but double-quote marks have no other purpose in Octave, it is
best to use double-quote marks to denote strings.

Strings can be concatenated using the notation for defining matrices. For example, the
expression

["fOO" S Ilbarll s “baz"]
produces the string whose contents are ‘foobarbaz’. See Chapter 4 [Numeric Data Types],
page 47, for more information about creating matrices.

5.1 Escape Sequences in String Constants

In double-quoted strings, the backslash character is used to introduce escape sequences that
represent other characters. For example, ‘\n’ embeds a newline character in a double-quoted
string and ‘\"’ embeds a double quote character. In single-quoted strings, backslash is not
a special character. Here is an example showing the difference:

double ("\n")
= 10
double ('\n')
= [92 110]
Here is a table of all the escape sequences used in Octave (within double quoted strings).
They are the same as those used in the C programming language.

\\ Represents a literal backslash, ‘\’.

\" Represents a literal double-quote character, ‘"’.

\' Represents a literal single-quote character, ‘'’

\O Represents the null character, control-Q, ASCII code 0.
\a Represents the “alert” character, control-g, ASCII code 7.
\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-1, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.
\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

\nnn Represents the octal value nnn, where nnn are one to three digits between 0

and 7. For example, the code for the ASCII ESC (escape) character is ‘\033’.

68 GNU Octave (version 4.4.1)

\xhh. .. Represents the hexadecimal value hh, where hh are hexadecimal digits (‘0’
through ‘9’ and either ‘A’ through ‘F’ or ‘a’ through ‘f’). Like the same construct
in ANSI C, the escape sequence continues until the first non-hexadecimal digit
is seen. However, using more than two hexadecimal digits produces undefined
results.

In a single-quoted string there is only one escape sequence: you may insert a single quote
character using two single quote characters in succession. For example,
'T can''t escape'
= I can't escape
In scripts the two different string types can be distinguished if necessary by using is_
dq_string and is_sq_string.

is_dq_string (x)
Return true if x is a double-quoted character string.

See also: [is_sq_string], page 68, [ischar], page 68.

is_sq_string (x)
Return true if x is a single-quoted character string.

See also: [is_dq_string], page 68, [ischar|, page 68.

5.2 Character Arrays

The string representation used by Octave is an array of characters, so internally the string
"dddddddddd" is actually a row vector of length 10 containing the value 100 in all places
(100 is the ASCII code of "d"). This lends itself to the obvious generalization to character
matrices. Using a matrix of characters, it is possible to represent a collection of same-length
strings in one variable. The convention used in Octave is that each row in a character matrix
is a separate string, but letting each column represent a string is equally possible.

The easiest way to create a character matrix is to put several strings together into a
matrix.
collection = ["String #1"; "String #2"]1;
This creates a 2-by-9 character matrix.

The function ischar can be used to test if an object is a character matrix.

ischar (x)
Return true if x is a character array.

See also: [isfloat], page 62, [isinteger], page 54, [islogical], page 62, [isnumeric], page 62,
[isstring], page 68, [iscellstr]|, page 122, [isa], page 39.

isstring (s)
Return true if s is a string array.
A string array is a data type that stores strings (row vectors of characters) at each
element in the array. It is distinct from character arrays which are N-dimensional
arrays where each element is a single 1x1 character. It is also distinct from cell arrays
of strings which store strings at each element, but use cell indexing ‘{}’ to access
elements rather than string arrays which use ordinary array indexing ‘()’.

Chapter 5: Strings 69

Programming Note: Octave does not yet implement string arrays so this function will
always return false.

See also: [ischar|, page 68, [iscellstr], page 122, [isfloat], page 62, [isinteger|, page 54,
[islogical], page 62, [isnumeric], page 62, [isa], page 39.

To test if an object is a string (i.e., a 1xN row vector of characters and not a character
matrix) you can use the ischar function in combination with the isrow function as in the
following example:

ischar (collection)
= 1

ischar (collection) && isrow (collection)
= 0

ischar ("my string") && isrow ("my string")
= 1
One relevant question is, what happens when a character matrix is created from strings
of different length. The answer is that Octave puts blank characters at the end of strings
shorter than the longest string. It is possible to use a different character than the blank
character using the string_fill_char function.

val = string_fill_char ()

old_val = string_fill_char (new_val)

string_fill_char (new_val, "local")
Query or set the internal variable used to pad all rows of a character matrix to the
same length.

The value must be a single character and the default is " " (a single space). For
example:
string fill_char ("X");
["these"; "are"; "strings"]
= "theseXX"
"areXXXX"
"strings"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

This shows a problem with character matrices. It simply isn’t possible to represent
strings of different lengths. The solution is to use a cell array of strings, which is described
in Section 6.3.4 [Cell Arrays of Strings|, page 121.

5.3 Creating Strings

The easiest way to create a string is, as illustrated in the introduction, to enclose a text
in double-quotes or single-quotes. It is however possible to create a string without actually
writing a text. The function blanks creates a string of a given length consisting only of
blank characters (ASCII code 32).

70 GNU Octave (version 4.4.1)

blanks (n)
Return a string of n blanks.

For example:

blanks (10);
whos ans
=
Attr Name Size Bytes Class
ans 1x10 10 char

See also: [repmat|, page 485.

5.3.1 Concatenating Strings

Strings can be concatenated using matrix notation (see Chapter 5 [Strings|, page 67,
Section 5.2 [Character Arrays|, page 68) which is often the most natural method. For
example:

fullname = [fname ".txt"];

email = ["<" user "@" domain ">"];
In each case it is easy to see what the final string will look like. This method is also the
most efficient. When using matrix concatenation the parser immediately begins joining the
strings without having to process the overhead of a function call and the input validation
of the associated function.

Nevertheless, there are several other functions for concatenating string objects which
can be useful in specific circumstances: char, strvcat, strcat, and cstrcat. Finally,
the general purpose concatenation functions can be used: see [cat], page 475, [horzcat],
page 476, and [vertcat], page 476.

e All string concatenation functions except cstrcat convert numerical input into char-
acter data by taking the corresponding ASCII character for each element, as in the
following example:

char ([98, 97, 110, 97, 110, 971)
= banana

e char and strvcat concatenate vertically, while strcat and cstrcat concatenate hor-
izontally. For example:

char ("an apple", "two pears")
= an apple
two pears

strcat ("oc", "tave", " is", " good", " for you")
= octave is good for you
e char generates an empty row in the output for each empty string in the input. strvcat,
on the other hand, eliminates empty strings.
char ("orange", "green", "", "red")
= orange
green

red

Chapter 5: Strings 71

strvcat ("orange", "green", "", "red")
= orange
green
red

e All string concatenation functions except cstrcat also accept cell array data (see
Section 6.3 [Cell Arrays|, page 115). char and strvcat convert cell arrays into char-
acter arrays, while strcat concatenates within the cells of the cell arrays:

char ({llredll’ "green", nn, “blue"})
= red
green

blue

strcat ({"abc"; "ghi"}, {"def"; "jk1"})
=
{
[1,1] = abcdef
[2,1] = ghijkl

}

e strcat removes trailing white space in the arguments (except within cell arrays), while
cstrcat leaves white space untouched. Both kinds of behavior can be useful as can be
seen in the examples:

strcat (["diril";"directory2"], ["/";"/"], ["filel";"file2"])
= dirl/filel
directory2/file2

cstrcat (["thirteen apples"; "a banana"]l, [" 5%";" 1$"]1)
= thirteen apples 5%
a banana 1$

Note that in the above example for cstrcat, the white space originates from the inter-
nal representation of the strings in a string array (see Section 5.2 [Character Arrays|,
page 68).

char (x)
char (x, ...)
char (s1, s2, ...)

char (cell_array)
Create a string array from one or more numeric matrices, character matrices, or cell
arrays.

Arguments are concatenated vertically. The returned values are padded with blanks
as needed to make each row of the string array have the same length. Empty input
strings are significant and will concatenated in the output.

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

72

GNU Octave (version 4.4.1)

For cell arrays, each element is concatenated separately. Cell arrays converted through
char can mostly be converted back with cellstr. For example:

char ([97, 98, 99], "", {"98", "99", 100}, "stri", ["ha", "1f"])
= ["abc "
n n
ll98 n
ll99 n
lld n
"strl"
"half"]

See also: [strvcat|, page 72, [cellstr], page 122.

strvcat (x)

strvcat (x, ...)
strvcat (si, s2, ...)
strvcat (cell_array)

Create a character array from one or more numeric matrices, character matrices, or
cell arrays.

Arguments are concatenated vertically. The returned values are padded with blanks
as needed to make each row of the string array have the same length. Unlike char,
empty strings are removed and will not appear in the output.

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
strvcat can mostly be converted back with cellstr. For example:

strvcat ([97, 98, 99], ", {"98", "99" 6 100}, "stril", ["ha", "1f"])
= ["abc "
n 98 n
||99 n
Ild n
"strl"
"half"]

See also: [char|, page 71, [strcat], page 72, [cstrcat], page 73.

strcat (s1, s2, ...)

Return a string containing all the arguments concatenated horizontally.

If the arguments are cell strings, strcat returns a cell string with the individual cells
concatenated. For numerical input, each element is converted to the corresponding
ASCII character. Trailing white space for any character string input is eliminated be-
fore the strings are concatenated. Note that cell string values do not have whitespace
trimmed.

For example:

strcat ("|", " leading space is preserved", "|")
= | leading space is preserved]|

Chapter 5: Strings 73

strcat ("|", "trailing space is eliminated ", "[|")
= |trailing space is eliminated|

strcat ("homogeneous space |", " ", "| is also eliminated")
= homogeneous space || is also eliminated

s = ["ab"; "cde" 1;
strcat (s, s, s)
=
"ababab "
"cdecdecde"
s ={ "ab"; "cd " };
strcat (s, s, s)
=
{
[1,1] = ababab
[2,1] cd cd cd

}
See also: [cstrcat], page 73, [char], page 71, [strvcat], page 72.

cstrcat (si, s2,...)
Return a string containing all the arguments concatenated horizontally with trailing
white space preserved.

For example:

cstrcat ("ab "o "ed")
= "ab cd"
s = ["ab"; "cde" 1;
cstrcat (s, s, s)
= "ab ab ab "
"cdecdecde"

See also: [strcat], page 72, [char], page 71, [strvcat], page 72.

)

5.3.2 Converting Numerical Data to Strings

Apart from the string concatenation functions (see Section 5.3.1 [Concatenating Strings],
page 70) which cast numerical data to the corresponding ASCII characters, there are several
functions that format numerical data as strings. mat2str and num2str convert real or
complex matrices, while int2str converts integer matrices. int2str takes the real part
of complex values and round fractional values to integer. A more flexible way to format
numerical data as strings is the sprintf function (see Section 14.2.4 [Formatted Output],
page 277, [sprintf], page 278).

s = mat2str (x, n)
s = mat2str (x, n, "class")
Format real, complex, and logical matrices as strings.

The returned string may be used to reconstruct the original matrix by using the eval
function.

74

GNU Octave (version 4.4.1)

The precision of the values is given by n. If n is a scalar then both real and imaginary
parts of the matrix are printed to the same precision. Otherwise n(1) defines the
precision of the real part and n(2) defines the precision of the imaginary part. The
default for n is 15.

If the argument "class" is given then the class of x is included in the string in such
a way that eval will result in the construction of a matrix of the same class.

mat2str
=

mat2str
=

mat2str
=

mat2str
=

isequal
=

(L -1/3 +i/7; 1/3 - i/7 1, [4 2])
"[-0.3333+0.14i;0.3333-0.141i]"

([-1/3 +i/7; 1/3 -i/7 1, [4 2])
"[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]"

(int16 ([1 -11), "class")
"int16([1 -1])"

(logical (eye (2)))
"[true false;false true]"

(x, eval (mat2str (x)))
1

See also: [sprintf], page 278, [num2str|, page 74, [int2str], page 75.

num2str (x)

num2str (x, precision)
num2str (x, format)
Convert a number (or array) to a string (or a character array).

The optional second argument may either give the number of significant digits (pre-
cision) to be used in the output or a format template string (format) as in sprintf
(see Section 14.2.4 [Formatted Output], page 277). num2str can also process complex

numbers.

Examples:

Chapter 5: Strings

num2str (123.456)
= "123.46"

num2str (123.456, 4)
= "123.5"

s = num2str ([1, 1.34; 3, 3.56], "/5.1f")

= s

—
S O

num2str (1.234 + 27.31)
= "1.234+27.3i"

Size

2x8

75

The num2str function is not very flexible. For better control over the results, use
sprintf (see Section 14.2.4 [Formatted Output], page 277).

Programming Notes:

For MATLAB compatibility, leading spaces are stripped before returning the string.

Integers larger than flintmax may not be displayed correctly.

For complex x, the format string may only contain one output conversion specification
and nothing else. Otherwise, results will be unpredictable.

Any optional format specified by the programmer is used without modification. This
is in contrast to MATLAB which tampers with the format based on internal heuristics.

See also: [sprintf], page 278, [int2str]|, page 75, [mat2str]|, page 73.

int2str (n)

Convert an integer (or array of integers) to a string (or a character array).

int2str (123)

= "123"
s = int2str ([1, 2, 3;
= s =
1 2 3
4 5 6
whos s
=
Attr Name

4, 5, 61)

Size

2x7

14

char

This function is not very flexible. For better control over the results, use sprintf
(see Section 14.2.4 [Formatted Output|, page 277).

76 GNU Octave (version 4.4.1)

Programming Notes:

Non-integers are rounded to integers before display. Only the real part of complex
numbers is displayed.

See also: [sprintf], page 278, [num2str], page 74, [mat2str], page 73.

)

5.4 Comparing Strings

Since a string is a character array, comparisons between strings work element by element
as the following example shows:

GNU = "GNU's Not UNIX";
spaces = (GNU == " ")
= spaces =
0 0 0 0 0 1 0 0 0 1 0 0 0 0

To determine if two strings are identical it is necessary to use the strcmp function. It com-
pares complete strings and is case sensitive. strncmp compares only the first N characters
(with N given as a parameter). strcmpi and strncmpi are the corresponding functions for
case-insensitive comparison.

strcmp (s1, s2)
Return 1 if the character strings s1 and s2 are the same, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s stremp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

See also: [strcmpi|, page 77, [strncmp], page 76, [strncmpi], page 77.

strncmp (s1, s2, n)
Return 1 if the first n characters of strings s1 and s2 are the same, and 0 otherwise.

strncmp ("abce", "abcd", 3)
= 1

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

strncmp ("abce", {"abcd", "bca", "abc"}, 3)
= [1, 0, 1]

Caution: For compatibility with MATLAB, Octave’s strncmp function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

See also: [strncmpi], page 77, [stremp]|, page 76, [strempi], page 77.

Chapter 5: Strings 77

strcmpi (si, s2)
Return 1 if the character strings sl and s2 are the same, disregarding case of alpha-
betic characters, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

Caution: National alphabets are not supported.

See also: [strcmp], page 76, [strncmp], page 76, [strncmpi], page 77.

strncmpi (si, s2, n)
Return 1 if the first n character of sl and s2 are the same, disregarding case of
alphabetic characters, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strncmpi function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

Caution: National alphabets are not supported.

See also: [strncmp], page 76, [strcmp|, page 76, [strempi], page 77.

)

5.5 Manipulating Strings

Octave supports a wide range of functions for manipulating strings. Since a string is just a
matrix, simple manipulations can be accomplished using standard operators. The following
example shows how to replace all blank characters with underscores.

quote = ...

"First things first, but not necessarily in that order";
quote(quote == " n) = ll_u
= quote =

First_things_first,_but_not_necessarily_in_that_order

For more complex manipulations, such as searching, replacing, and general regular ex-
pressions, the following functions come with Octave.

deblank (s)
Remove trailing whitespace and nulls from s.

If 5 is a matrix, deblank trims each row to the length of longest string. If s is a cell
array of strings, operate recursively on each string element.

78 GNU Octave (version 4.4.1)

Examples:
deblank (" abc ")
= " abc"
deblank ([" abc o def ")
:> I:" abc n ; n def ll]

See also: [strtrim|, page 78.

strtrim (s)
Remove leading and trailing whitespace from s.

If s is a matrix, strtrim trims each row to the length of longest string. If s is a cell
array of strings, operate recursively on each string element.

For example:

strtrim (" abc ")
= "abc"

strtrim ([" abc e def ")
= ["abc n ; n def“]

See also: [deblank], page 77.

strtrunc (s, n)
Truncate the character string s to length n.

If s is a character matrix, then the number of columns is adjusted.

If s is a cell array of strings, then the operation is performed on each cell element and
the new cell array is returned.

findstr (s, t)

findstr (s, t, overlap)
Return the vector of all positions in the longer of the two strings s and t where an
occurrence of the shorter of the two starts.

If the optional argument overlap is true (default), the returned vector can include
overlapping positions. For example:

findstr ("ababab", "a")
= [1, 3, 5];

findstr ("abababa", "aba", 0)
= [1, 5]

Caution: findstr is scheduled for deprecation. Use strfind in all new code.

See also: [strfind], page 79, [strmatch], page 80, [strcmp], page 76, [strncmp], page 76,
[strempi], page 77, [strncmpi], page 77, [find], page 471.

idx = strchr (str, chars)
idx = strchr (str, chars, n)
idx = strchr (str, chars, n, direction)
[i, jl = strchr (...)
Search for the string str for occurrences of characters from the set chars.

Chapter 5: Strings 79

The return value(s), as well as the n and direction arguments behave identically as in
find.

This will be faster than using regexp in most cases.

See also: [find], page 471.

index (s, t)

index (s, t, direction)
Return the position of the first occurrence of the string t in the string s, or 0 if no
occurrence is found.

s may also be a string array or cell array of strings.
For example:

index ("Teststring", "t")
= 4

If direction is "first", return the first element found. If direction is "last", return
the last element found.

See also: [find], page 471, [rindex], page 79.

rindex (s, t)
Return the position of the last occurrence of the character string t in the character
string s, or 0 if no occurrence is found.
s may also be a string array or cell array of strings.

For example:

rindex ("Teststring", "t")
= 6

The rindex function is equivalent to index with direction set to "last".

See also: [find], page 471, [index]|, page 79.

idx = strfind (str, pattern)

idx = strfind (cellstr, pattern)

idx = strfind (..., "overlaps", val)
Search for pattern in the string str and return the starting index of every such occur-
rence in the vector idx.

If there is no such occurrence, or if pattern is longer than str, or if pattern itself is
empty, then idx is the empty array [].

The optional argument "overlaps" determines whether the pattern can match at
every position in str (true), or only for unique occurrences of the complete pattern
(false). The default is true.

If a cell array of strings cellstr is specified then idx is a cell array of vectors, as
specified above.

Examples:

80 GNU Octave (version 4.4.1)

strfind ("abababa", "aba'")

= [1, 3, 5]
strfind ("abababa", "aba", "overlaps", false)
= [1, 5]

strfind ({"abababa", "bebebe", "ab"}, "aba")

=
{
[1,1] =
1 3 5
[1,2] = [1(1x0)
[1,3] = [1(1x0)
}

See also: [findstr], page 78, [strmatch], page 80, [regexp], page 88, [regexpi], page 90,
[find], page 471.

str = strjoin (cstr)
str = strjoin (cstr, delimiter)
Join the elements of the cell string array, cstr, into a single string.

If no delimiter is specified, the elements of cstr are separated by a space.

If delimiter is specified as a string, the cell string array is joined using the string.
Escape sequences are supported.

If delimiter is a cell string array whose length is one less than cstr, then the elements of
cstr are joined by interleaving the cell string elements of delimiter. Escape sequences
are not supported.

strjoin ({'Octave','Scilab','Lush','Yorick'}, 'x')
= 'Octavex*Scilab*Lush*Yorick!'

See also: [strsplit], page 81.

strmatch (s, 4)
strmatch (s, 4, "exact")
Return indices of entries of A which begin with the string s.

The second argument A must be a string, character matrix, or a cell array of strings.

If the third argument "exact" is not given, then s only needs to match A up to the
length of s. Trailing spaces and nulls in s and A are ignored when matching.

For example:

Chapter 5: Strings 81

strmatch ("apple", "apple juice")

= 1

strmatch ("apple", ["apple "; "apple juice"; "an apple"])
= [1; 2]

strmatch ("apple", ["apple "; "apple juice"; "an apple"], "exact")
= [1]

Caution: strmatch is scheduled for deprecation. Use strncmp (normal case), or
strcmp ("exact" case), or regexp in all new code.

See also: [strfind], page 79, [findstr|, page 78, [strcmp]|, page 76, [strncmp|, page 76,
[strempi], page 77, [strncmpi], page 77, [find], page 471.

[tok, rem] = strtok (str)

[tok, rem] strtok (str, delim)
Find all characters in the string str up to, but not including, the first character which
is in the string delim.

str may also be a cell array of strings in which case the function executes on every
individual string and returns a cell array of tokens and remainders.

Leading delimiters are ignored. If delim is not specified, whitespace is assumed.

If rem is requested, it contains the remainder of the string, starting at the first de-
limiter.

Examples:

strtok ("this is the life")
= "this"

[tok, rem] = strtok ("14*27+31", "+-x/")
=

tok

rem

14
*27+31

See also: [index], page 79, [strsplit], page 81, [strchr], page 78, [isspace], page 99.

[cstr] = strsplit (str)

[cstr] strsplit (str, del)

[cstr] strsplit (..., name, value)

[cstr, matches] = strsplit (...)
Split the string str using the delimiters specified by del and return a cell string array
of substrings.

If a delimiter is not specified the string is split at whitespace {" ", "\f", "\n",
"\r", "\t", "\v"}. Otherwise, the delimiter, del must be a string or cell array of
strings. By default, consecutive delimiters in the input string s are collapsed into one
resulting in a single split.

Supported name/value pair arguments are:

e collapsedelimiters which may take the value of true (default) or false.

82 GNU Octave (version 4.4.1)

e delimitertype which may take the value of "simple" (default) or
"regularexpression". A simple delimiter matches the text exactly as written.
Otherwise, the syntax for regular expressions outlined in regexp is used.

The optional second output, matches, returns the delimiters which were matched in
the original string.
Examples with simple delimiters:

strsplit ("a b c")

=
{
[1,1] = a
[1,2] = Db
[1,3] = ¢
}
strsplit ("a,b,c", ",")
=
{
[1,1] = a
[1,2] =D
[1,3] = ¢
}
strsplit ("a foo b,bar c", {" ", ",", "foo", "bar"})
=
{
[1,1] = a
[1,2] = b
[1,3] = ¢
}
strsplit ("a,,b, c", {",", " "}, "collapsedelimiters", false)
=
{
[1,1] = a
[1,2] =
[1,3] = b
[1,4] =
[1,5] = ¢
}

Examples with regularexpression delimiters:

strsplit ("a foo b,bar c", ',|\sl|fool|bar', "delimitertype", "regularexpression")
=
{

[1,1] = a

[1,2] = b

[1,3]

Chapter 5: Strings 83

}
strsplit ("a,,b, c", '[,]', "collapsedelimiters", false, "delimitertype", "regularexpression")]j
=
{
[1,1] = a
[1,2] =
[1,3] = b
[1,4] =
[1,5] = ¢
}
strsplit ("a,\t,b, c", {',', '\s'}, "delimitertype", "regularexpression")
=
{
[1,1] = a
[1,2] = b
[1,3] = ¢
}
strsplit ("a,\t,b, <", {',', ' ', '\t'}, "collapsedelimiters", false)
=
{
[1,1] = a
[1,2] =
[1,3] =
[1,4] = b
[1,5] =
[1,6] = ¢
}

See also: [ostrsplit], page 83, [strjoin], page 80, [strtok], page 81, [regexp], page 88.

[cstr] = ostrsplit (s, sep)
[cstr] = ostrsplit (s, sep, strip_empty)
Split the string s using one or more separators sep and return a cell array of strings.

Consecutive separators and separators at boundaries result in empty strings, unless
strip_empty is true. The default value of strip_empty is false.

2-D character arrays are split at separators and at the original column boundaries.

Example:

84

[a,
[a,
[a,
[a,
[a,

GNU Octave (version 4.4.1)

ostrsplit ("a,b,c", ",")
=
{
[1,1] = a
[1,2] =
[1,3] = ¢
}
ostrsplit (["a,b" ; "cde"l, ",")
=
{
[1,1] = a
[1,2] =D
[1,3] = cde
}

See also: [strsplit], page 81, [strtok], page 81.

—_

.‘]

strread (str)

strread (str, format)

strread (str, format, format_repeat)
strread (str, format, propl, valuel, ...)

= strread (str, format, format_repeat, propl, valuel, ...)
Read data from a string.

The string str is split into words that are repeatedly matched to the specifiers in
format. The first word is matched to the first specifier, the second to the second
specifier and so forth. If there are more words than specifiers, the process is repeated
until all words have been processed.

The string format describes how the words in str should be parsed. It may contain
any combination of the following specifiers:

%s
it
%n
%d

yAl

YA
yAS
yAE

The word is parsed as a string.

The word is parsed as a number and converted to double.

The word is parsed as a number and converted to int32.

The word is skipped.

For %s and %d, %f, %n, %u and the associated %*s ... specifiers an
optional width can be specified as %Ns, etc. where N is an integer > 1.
For %f, format specifiers like %N.Mf are allowed.

literals In addition the format may contain literal character strings; these will be

skipped during reading.

Parsed word corresponding to the first specifier are returned in the first output argu-
ment and likewise for the rest of the specifiers.

Chapter 5: Strings 85

By default, format is "%f", meaning that numbers are read from str. This will do if
str contains only numeric fields.
For example, the string

str = "\

Bunny Bugs 5.5\n\
Duck Daffy -7.5e-5\n\
Penguin Tux 6"

can be read using
[a, b, c] = strread (str, "¥%s %s %f");
Optional numeric argument format_repeat can be used for limiting the number of

items read:
-1 (default) read all of the string until the end.
N Read N times nargout items. 0 (zero) is an acceptable value for for-

mat_repeat.

The behavior of strread can be changed via property-value pairs. The following
properties are recognized:

"commentstyle"
Parts of str are considered comments and will be skipped. value is the
comment style and can be any of the following.
e '"shell" Everything from # characters to the nearest end-of-line is
skipped.
e "c" Everything between /* and */ is skipped.
e "c++" Everything from // characters to the nearest end-of-line is
skipped.
e "matlab" Everything from % characters to the nearest end-of-line is
skipped.
e user-supplied. Two options: (1) One string, or 1x1 cell string: Skip
everything to the right of it; (2) 2x1 cell string array: Everything
between the left and right strings is skipped.

"delimiter"
Any character in value will be used to split str into words (default value
= any whitespace). Note that whitespace is implicitly added to the set
of delimiter characters unless a "%s" format conversion specifier is sup-
plied; see "whitespace" parameter below. The set of delimiter characters
cannot be empty; if needed Octave substitutes a space as delimiter.

"emptyvalue"
Value to return for empty numeric values in non-whitespace delimited
data. The default is NaN. When the data type does not support NaN
(int32 for example), then default is zero.

"multipledelimsasone"
Treat a series of consecutive delimiters, without whitespace in between,
as a single delimiter. Consecutive delimiter series need not be vertically
"aligned".

86 GNU Octave (version 4.4.1)

"treatasempty"
Treat single occurrences (surrounded by delimiters or whitespace) of the
string(s) in value as missing values.

"returnonerror"
If value true (1, default), ignore read errors and return normally. If false
(0), return an error.

"whitespace"

Any character in value will be interpreted as whitespace and trimmed; the
string defining whitespace must be enclosed in double quotes for proper
processing of special characters like "\t". In each data field, multiple
consecutive whitespace characters are collapsed into one space and leading
and trailing whitespace is removed. The default value for whitespace is
" \b\r\n\t" (note the space). Whitespace is always added to the set of
delimiter characters unless at least one "%s" format conversion specifier is
supplied; in that case only whitespace explicitly specified in "delimiter"
is retained as delimiter and removed from the set of whitespace characters.
If whitespace characters are to be kept as-is (in e.g., strings), specify an
empty value (i.e., "") for "whitespace"; obviously, whitespace cannot be
a delimiter then.

When the number of words in str doesn’t match an exact multiple of the number of
format conversion specifiers, strread’s behavior depends on the last character of str:

last character = "\n"
Data columns are padded with empty fields or NaN so that all columns
have equal length

last character is not "\n"
Data columns are not padded; strread returns columns of unequal length

See also: [textscan]|, page 266, [textread], page 265, [load], page 261, [dlmread],

9 9

page 264, [fscanf|, page 283.

newstr = strrep (str, ptn, rep)

newstr = strrep (cellstr, ptn, rep)

newstr = strrep (..., "overlaps", val)
Replace all occurrences of the pattern ptn in the string str with the string rep and
return the result.

The optional argument "overlaps" determines whether the pattern can match at
every position in str (true), or only for unique occurrences of the complete pattern
(false). The default is true.

s may also be a cell array of strings, in which case the replacement is done for each
element and a cell array is returned.

Example:
strrep ("This is a test string", "is", "&%$")
= "Th&%$ &/%$ a test string"

See also: [regexprep], page 90, [strfind], page 79, [findstr], page 78.

Chapter 5: Strings 87

newstr = erase (str, ptn)
Delete all occurrences of ptn within str.

str and ptn can be ordinary strings, cell array of strings, or character arrays.
Examples

string, single pattern
erase ("Hello World!", " World")
= "Hello!"

cellstr, single pattern
erase ({"Hello", "World!"}, "World")
:> {llHelloll s n ! II}

string, multiple patterns
erase ("The Octave interpreter is fabulous", {"interpreter ", "The "})J]
= "Octave is fabulous"

cellstr, multiple patterns
erase ({"The ", "Octave interpreter ", "is fabulous"}, {"interpreter ", "The "}|]
= {"", "Octave ", "is fabulous"}

Programming Note: erase deletes the first instance of a pattern in a string when
there are overlapping occurrences. For example:

erase ("abababa", "aba")
i llbll

See strrep for processing overlaps.

See also: [strrep|, page 86, [regexprep], page 90.

substr (s, offset)

substr (s, offset, len)
Return the substring of s which starts at character number offset and is len characters
long.

Position numbering for offsets begins with 1. If offset is negative, extraction starts
that far from the end of the string.

If len is omitted, the substring extends to the end of s. A negative value for Ilen
extracts to within len characters of the end of the string

Examples:

substr ("This is a test string", 6, 9)
= "is a test"

substr ("This is a test string", -11)
= '"test string"

substr ("This is a test string", -11, -7)
= "test"

This function is patterned after the equivalent function in Perl.

88

GNU Octave (version 4.4.1)

[s, e, te, m, t, nm, sp] = regexp (str, pat)
[...] = regexp (str, pat, "optl1", ...)
Regular expression string matching.

Search for pat in str and return the positions and substrings of any matches, or empty
values if there are none.

The matched pattern pat can include any of the standard regex operators, including:

*+ 7 {}

(...7[..

O (7
I

"8

Match any character

Repetition operators, representing

* Match zero or more times

+ Match one or more times

? Match zero or one times

{n} Match exactly n times

{n,} Match n or more times

{m,n} Match between m and n times
.1

List operators. The pattern will match any character listed between " ["
and "]1". If the first character is """ then the pattern is inverted and any
character except those listed between brackets will match.

Escape sequences defined below can also be used inside list operators.
For example, a template for a floating point number might be [-+.\d]+.

Grouping operator. The first form, parentheses only, also creates a token.

Alternation operator. Match one of a choice of regular expressions. The
alternatives must be delimited by the grouping operator () above.

Anchoring operators. Requires pattern to occur at the start (7) or end
($) of the string.

In addition, the following escaped characters have special meaning.

\d
\D
\s
\S
\w
\W
\<
\>
\B

Match any digit

Match any non-digit

Match any whitespace character
Match any non-whitespace character
Match any word character

Match any non-word character
Match the beginning of a word
Match the end of a word

Match within a word

Chapter 5: Strings 89

Implementation Note: For compatibility with MATLAB, escape sequences in pat (e.g.,
"\n" => newline) are expanded even when pat has been defined with single quotes.
To disable expansion use a second backslash before the escape sequence (e.g., "\\n")
or use the regexptranslate function.

The outputs of regexp default to the order given below

S The start indices of each matching substring

e The end indices of each matching substring

te The extents of each matched token surrounded by (...) in pat

m A cell array of the text of each match

t A cell array of the text of each token matched

nm A structure containing the text of each matched named token, with

the name being used as the fieldname. A named token is denoted by
(7<name>...).

Sp A cell array of the text not returned by match, i.e., what remains if you
split the string based on pat.

Particular output arguments, or the order of the output arguments, can be selected
by additional opt arguments. These are strings and the correspondence between the
output arguments and the optional argument are

'start’ s

'end'’ e

'tokenExtents' te

'match'’ m

'tokens' t

'names'’ nm

'split' sp
Additional arguments are summarized below.
‘once’ Return only the first occurrence of the pattern.
‘matchcase’

Make the matching case sensitive. (default)
Alternatively, use (7-1) in the pattern.
‘ignorecase’
Ignore case when matching the pattern to the string.
Alternatively, use (?7i) in the pattern.
‘stringanchors’

Match the anchor characters at the beginning and end of the string.
(default)

Alternatively, use (?7-m) in the pattern.

‘lineanchors’
Match the anchor characters at the beginning and end of the line.

Alternatively, use (?m) in the pattern.

90 GNU Octave (version 4.4.1)

‘dotall’ The pattern . matches all characters including the newline character.
(default)
Alternatively, use (7s) in the pattern.

‘dotexceptnewline’
The pattern . matches all characters except the newline character.

Alternatively, use (7-s) in the pattern.

‘literalspacing’
All characters in the pattern, including whitespace, are significant and
are used in pattern matching. (default)

Alternatively, use (7-x) in the pattern.

‘freespacing’
The pattern may include arbitrary whitespace and also comments begin-
ning with the character ‘#.

Alternatively, use (7x) in the pattern.

‘noemptymatch’
Zero-length matches are not returned. (default)

‘emptymatch’
Return zero-length matches.

regexp ('a', 'bx', 'emptymatch') returns [1 2] because there are
zero or more 'b' characters at positions 1 and end-of-string.

Stack Limitation Note: Pattern searches are done with a recursive function which can

overflow the program stack when there are a high number of matches. For example,
regexp (repmat ('a', 1, 1leb), '(a)+')

may lead to a segfault. As an alternative, consider constructing pattern searches that

reduce the number of matches (e.g., by creatively using set complement), and then
further processing the return variables (now reduced in size) with successive regexp

searches.

See also: [regexpi|, page 90, [strfind], page 79, [regexprep], page 90.

[s, e, te, m, t, nm, sp] = regexpi (str, pat)

[...] = regexpi (str, pat, "optl", ...)
Case insensitive regular expression string matching.
Search for pat in str and return the positions and substrings of any matches, or empty
values if there are none. See [regexp], page 88, for details on the syntax of the search

pattern.

See also: [regexp]|, page 88.

outstr = regexprep (string, pat, repstr)
outstr = regexprep (string, pat, repstr, "optl", ...)
Replace occurrences of pattern pat in string with repstr.

The pattern is a regular expression as documented for regexp. See [regexp|, page 88.

Chapter 5: Strings 91

The replacement string may contain $i, which substitutes for the ith set of parentheses
in the match string. For example,

regexprep ("Bill Dunn", '(\w+) (\w+)', '$2, $1')
returns "Dunn, Bill"

Options in addition to those of regexp are
‘once’ Replace only the first occurrence of pat in the result.

‘warnings’
This option is present for compatibility but is ignored.

Implementation Note: For compatibility with MATLAB, escape sequences in pat (e.g.,
"\n" => newline) are expanded even when pat has been defined with single quotes.
To disable expansion use a second backslash before the escape sequence (e.g., "\\n")
or use the regexptranslate function.

See also: [regexp|, page 88, [regexpi|, page 90, [strrep|, page 86.

regexptranslate (op, s)
Translate a string for use in a regular expression.

This may include either wildcard replacement or special character escaping.
The behavior is controlled by op which can take the following values
"wildcard"

The wildcard characters ., *, and ? are replaced with wildcards that are
appropriate for a regular expression. For example:

regexptranslate ("wildcard", "*.m")
= '.*\.m'
"escape" The characters $.7[], that have special meaning for regular expressions
are escaped so that they are treated literally. For example:

regexptranslate ("escape", "12.5")
= '12\.5'

See also: [regexp]|, page 88, [regexpi], page 90, [regexprep]|, page 90.

untabify (t)
untabify (t, tw)
untabify (t, tw, deblank)
Replace TAB characters in t with spaces.

The input, t, may be either a 2-D character array, or a cell array of character strings.
The output is the same class as the input.

The tab width is specified by tw, and defaults to eight.

If the optional argument deblank is true, then the spaces will be removed from the
end of the character data.

The following example reads a file and writes an untabified version of the same file
with trailing spaces stripped.

92 GNU Octave (version 4.4.1)

fid = fopen ("tabbed_script.m");

text = char (fread (fid, "uchar")');

fclose (fid);

fid = fopen ("untabified_script.m", "w");

text = untabify (strsplit (text, "\n"), 8, true);
fprintf (fid, "%s\n", text{:});

fclose (fid);

See also: [strjust], page 96, [strsplit], page 81, [deblank]|, page 77.

5.6 String Conversions
Octave supports various kinds of conversions between strings and numbers. As an example,
it is possible to convert a string containing a hexadecimal number to a floating point number.

hex2dec ("FF")
= 255

bin2dec (s)
Return the decimal number corresponding to the binary number represented by the
string s.
For example:
bin2dec ("1110")
= 14
Spaces are ignored during conversion and may be used to make the binary number
more readable.

bin2dec ("1000 0001")
= 129

If s is a string matrix, return a column vector with one converted number per row of
s; Invalid rows evaluate to NaN.

If s is a cell array of strings, return a column vector with one converted number per
cell element in s.

See also: [dec2bin], page 92, [base2dec|, page 93, [hex2dec], page 93.

dec2bin (d, len)
Return a binary number corresponding to the non-negative integer d, as a string of
ones and zeros.

For example:

dec2bin (14)
= "1110"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [bin2dec|, page 92, [dec2base], page 93, [dec2hex], page 93.

Chapter 5: Strings 93

dec2hex (d, len)
Return the hexadecimal string corresponding to the non-negative integer d.

For example:
dec2hex (2748)
= "ABC"
If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [hex2dec], page 93, [dec2base], page 93, [dec2bin], page 92.

hex2dec (s)
Return the integer corresponding to the hexadecimal number represented by the string
s.
For example:
hex2dec ("12B")
= 299
hex2dec ("12b")
= 299

If s is a string matrix, return a column vector with one converted number per row of
s; Invalid rows evaluate to NaN.

If s is a cell array of strings, return a column vector with one converted number per
cell element in s.

See also: [dec2hex], page 93, [base2dec]|, page 93, [bin2dec], page 92.

dec2base (d, base)
dec2base (d, base, len)
Return a string of symbols in base base corresponding to the non-negative integer d.
dec2base (123, 3)
= "11120"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

If base is a string then the characters of base are used as the symbols for the digits
of d. Space (’’) may not be used as a symbol.

dec2base (123, "aei")
= "eeeia"
The optional third argument, len, specifies the minimum number of digits in the
result.

See also: [base2dec], page 93, [dec2bin], page 92, [dec2hex], page 93.

base2dec (s, base)
Convert s from a string of digits in base base to a decimal integer (base 10).

base2dec ("11120", 3)
= 123

94

GNU Octave (version 4.4.1)

If 5 is a string matrix, return a column vector with one value per row of s. If a row
contains invalid symbols then the corresponding value will be NaN.

If 5 is a cell array of strings, return a column vector with one value per cell element
in s.
If base is a string, the characters of base are used as the symbols for the digits of s.
Space (’ ’) may not be used as a symbol.
base2dec ("yyyzx", "xyz")
= 123

See also: [dec2base], page 93, [bin2dec], page 92, [hex2dec], page 93.

num2hex (n)

= num2hex (n, "cell")

Convert a numeric array to an array of hexadecimal strings.
For example:

num2hex ([-1, 1, e, Inf])

= "b£f£0000000000000
3££0000000000000
4005bf0a8b145769
7££0000000000000"

If the argument n is a single precision number or vector, the returned string has a
length of 8. For example:

num2hex (single ([-1, 1, e, Inf]))
= "b£800000

3£800000

402d£854

7£800000"

With the optional second argument "cell", return a cell array of strings instead of
a character array.

See also: [hex2num)], page 94, [hex2dec|, page 93, [dec2hex], page 93.

= hex2num (s)

hex2num (s, class)

Typecast a hexadecimal character array or cell array of strings to an array of numbers.
By default, the input array is interpreted as a hexadecimal number representing a
double precision value. If fewer than 16 characters are given the strings are right
padded with '0' characters.

Given a string matrix, hex2num treats each row as a separate number.

hex2num (["4005bf0a8b145769"; "4024000000000000"])
= [2.7183; 10.000]

The optional second argument class may be used to cause the input array to be
interpreted as a different value type. Possible values are

Option Characters
"int8" 2

Chapter 5: Strings 95

"uint8" 2
"int16" 4
"uint16" 4
"int32" 8§
"uint32" 8
"int64" 16
"uint64" 16
"char" 2
"single" 8
"double" 16
For example:
hex2num (["402df854"; "41200000"], "single")
= [2.7183; 10.000]

See also: [num2hex], page 94, [hex2dec], page 93, [dec2hex]|, page 93.

str2double (s)
Convert a string to a real or complex number.

The string must be in one of the following formats where a and b are real numbers
and the complex unit is 'i' or 'j':

e a+hi

e a+ b*i

e a+i*b

e bi+a

e b*i+a

e i*h+a
If present, a and/or b are of the form [+-]d[,.]d[[eE][+-]d] where the brackets indicate

optional arguments and 'd' indicates zero or more digits. The special input values
Inf, NaN, and NA are also accepted.

s may be a character string, character matrix, or cell array. For character arrays
the conversion is repeated for every row, and a double or complex array is returned.
Empty rows in s are deleted and not returned in the numeric array. For cell arrays
each character string element is processed and a double or complex array of the same
dimensions as s is returned.

For unconvertible scalar or character string input str2double returns a NaN. Simi-
larly, for character array input str2double returns a NaN for any row of s that could
not be converted. For a cell array, str2double returns a NaN for any element of s
for which conversion fails. Note that numeric elements in a mixed string/numeric cell
array are not strings and the conversion will fail for these elements and return NaN.

str2double can replace str2num, and it avoids the security risk of using eval on
unknown data.

See also: [str2num|, page 96.

96 GNU Octave (version 4.4.1)

strjust (s)

strjust (s, pos)
Return the text, s, justified according to pos, which may be "left", "center", or
"right".
If pos is omitted it defaults to "right".

Null characters are replaced by spaces. All other character data are treated as non-
white space.

Example:

strjust (["a"; "ab"; "abc"; "abcd"])
=
n all
n abll
" abc"
"abcd"

See also: [deblank], page 77, [strrep], page 86, [strtrim], page 78, [untabify], page 91.

x = str2num (s)

[x, state] = str2num (s)
Convert the string (or character array) s to a number (or an array).
Examples:

str2num ("3.141596")
= 3.141596

str2num (["1, 2, 3"; "4, 5, 6"])
=1 2 3
4 5 6

The optional second output, state, is logically true when the conversion is successful.
If the conversion fails the numeric output, x, is empty and state is false.

Caution: As str2num uses the eval function to do the conversion, str2num will
execute any code contained in the string s. Use str2double for a safer and faster
conversion.

For cell array of strings use str2double.

See also: [str2double], page 95, [eval], page 161.

tolower (s)

lower (s)
Return a copy of the string or cell string s, with each uppercase character replaced
by the corresponding lowercase one; non-alphabetic characters are left unchanged.

For example:

tolower ("MiXeD cAsE 123")
= "mixed case 123"

See also: [toupper|, page 97.

Chapter 5: Strings 97

toupper (s)
upper (s)
Return a copy of the string or cell string s, with each lowercase character replaced by
the corresponding uppercase one; non-alphabetic characters are left unchanged.
For example:
toupper ("MiXeD cAsE 123")
= "MIXED CASE 123"

See also: [tolower]|, page 96.

native_bytes = unicode2native (utf8_str, codepage)
native_bytes = unicode2native (utf8_str)
Convert UTF-8 string utfS_str to byte stream using codepage.

The character vector utfS_str is converted to a byte stream native_bytes using the
code page given by codepage. The string codepage must be an identifier of a valid code
page. Examples for valid code pages are "IS0-8859-1", "Shift-JIS", or "UTF-16".
For a list of supported code pages, see https://www.gnu.org/software/libiconv.
If codepage is omitted or empty, the system default codepage is used.

If any of the characters cannot be mapped into the codepage codepage, they are
replaced with the appropriate substitution sequence for that codepage.

See also: [native2unicode], page 97.

utf8_str = native2unicode (native_bytes, codepage)

utf8_str = native2unicode (native_bytes)
Convert byte stream native_bytes to UTF-8 using codepage.
The numbers in the vector native_bytes are rounded and clipped to integers between
0 and 255. This byte stream is then mapped into the code page given by the string
codepage and returned in the string utf8_str. Octave uses UTF-8 as its internal
encoding. The string codepage must be an identifier of a valid code page. Examples
for valid code pages are "IS0-8859-1", "Shift-JIS", or "UTF-16". For a list of
supported code pages, see https://www.gnu.org/software/libiconv. If codepage
is omitted or empty, the system default codepage is used.

If native_bytes is a string vector, it is returned as is.

See also: [unicode2native|, page 97.
do_string_escapes (string)
Convert escape sequences in string to the characters they represent.
Escape sequences begin with a leading backslash ('\') followed by 1-3 characters
(.e.g., "\n" => newline).
See also: [undo_string_escapes|, page 97.
undo_string_escapes (s)
Convert special characters in strings back to their escaped forms.
For example, the expression
bell = "\a";

https://www.gnu.org/software/libiconv
https://www.gnu.org/software/libiconv

98 GNU Octave (version 4.4.1)

assigns the value of the alert character (control-g, ASCII code 7) to the string variable
bell. If this string is printed, the system will ring the terminal bell (if it is possible).
This is normally the desired outcome. However, sometimes it is useful to be able to
print the original representation of the string, with the special characters replaced by
their escape sequences. For example,

octave:13> undo_string_escapes (bell)
ans = \a
replaces the unprintable alert character with its printable representation.

See also: [do_string_escapes|, page 97.

5.7 Character Class Functions

Octave also provides the following character class test functions patterned after the functions
in the standard C library. They all operate on string arrays and return matrices of zeros and
ones. Elements that are nonzero indicate that the condition was true for the corresponding
character in the string array. For example:
isalpha ("!Q@WERT"Y&")
= [0,1,0,1,1,1, 1,0, 1, 0]

isalnum (s)
Return a logical array which is true where the elements of s are letters or digits and
false where they are not.

This is equivalent to (isalpha (s) | isdigit (s)).
See also: [isalphal], page 98, [isdigit], page 99, [ispunct], page 99, [isspace], page 99,
[iscntrl], page 99.

isalpha (s)

Return a logical array which is true where the elements of s are letters and false where
they are not.

This is equivalent to (islower (s) | isupper (s)).

See also: [isdigit], page 99, [ispunct], page 99, [isspace], page 99, [iscntrl], page 99,
[isalnum], page 98, [islower]|, page 98, [isupper|, page 99.

isletter (s)
Return a logical array which is true where the elements of s are letters and false where
they are not.

This is an alias for the isalpha function.
See also: [isalphal], page 98, [isdigit], page 99, [ispunct], page 99, [isspace], page 99,
[iscntrl], page 99, [isalnum]|, page 98.

islower (s)
Return a logical array which is true where the elements of s are lowercase letters and
false where they are not.

See also: [isupper|, page 99, [isalphal, page 98, [isletter|, page 98, [isalnum]|, page 98.

Chapter 5: Strings 99

isupper (s)
Return a logical array which is true where the elements of s are uppercase letters and
false where they are not.

See also: [islower|, page 98, [isalphal, page 98, [isletter], page 98, [isalnum], page 98.

isdigit (s)
Return a logical array which is true where the elements of s are decimal digits (0-9)
and false where they are not.

See also: [isxdigit]|, page 99, [isalpha], page 98, [isletter], page 98, [ispunct]|, page 99,
[isspace], page 99, [iscntrl], page 99.

isxdigit (s)
Return a logical array which is true where the elements of s are hexadecimal digits
(0-9 and a-fA-F).

See also: [isdigit], page 99.

ispunct (s)
Return a logical array which is true where the elements of s are punctuation characters
and false where they are not.

See also: [isalphal, page 98, [isdigit], page 99, [isspace], page 99, [iscntrl], page 99.

isspace (s)
Return a logical array which is true where the elements of s are whitespace characters
(space, formfeed, newline, carriage return, tab, and vertical tab) and false where they
are not.

See also: [iscntrl], page 99, [ispunct], page 99, [isalphal, page 98, [isdigit], page 99.
iscntrl (s)

Return a logical array which is true where the elements of s are control characters
and false where they are not.

See also: [ispunct], page 99, [isspace|, page 99, [isalpha], page 98, [isdigit], page 99.
isgraph (s)

Return a logical array which is true where the elements of s are printable characters
(but not the space character) and false where they are not.

See also: [isprint], page 99.
isprint (s)

Return a logical array which is true where the elements of s are printable characters
(including the space character) and false where they are not.

See also: [isgraph], page 99.
isascii (s)

Return a logical array which is true where the elements of s are ASCII characters (in
the range 0 to 127 decimal) and false where they are not.

100

GNU Octave (version 4.4.1)

isstrprop (str, prop)
Test character string properties.

For example:

isstrprop ("abc123", "alpha")
= [1, 1, 1, 0, 0, O]

If str is a cell array, isstrpop is applied recursively to each element of the cell array.

Numeric arrays are converted to character strings.

The second
n alpha n

n alnlﬂn“
"alphanum"

"lower"
"upper"
"digit"
"xdigit"

n Space n
"wspace"

llpunct n
"cntrl"
llgraphll

"graphic"

llprint n

"ascii"

argument prop must be one of

True for characters that are alphabetic (letters).

True for characters that are alphabetic or digits.
True for lowercase letters.

True for uppercase letters.

True for decimal digits (0-9).

True for hexadecimal digits (a-fA-F0-9).

True for whitespace characters (space, formfeed, newline, carriage return,
tab, vertical tab).

True for punctuation characters (printing characters except space or letter
or digit).

True for control characters.

True for printing characters except space.
True for printing characters including space.

True for characters that are in the range of ASCII encoding.

See also: [isalpha], page 98, [isalnum], page 98, [islower], page 98, [isupper], page 99,
[isdigit], page 99, [isxdigit], page 99, [isspace], page 99, [ispunct], page 99, [iscntrl],
page 99, [isgraph|, page 99, [isprint], page 99, [isascii], page 99.

101

6 Data Containers

Octave includes support for three different mechanisms to contain arbitrary data types
in the same variable: Structures, which are C-like, and are indexed with named fields;
containers.Map objects, which store data in key/value pairs; and cell arrays, where each
element of the array can have a different data type and or shape. Multiple input arguments
and return values of functions are organized as another data container, the comma separated
list.

6.1 Structures

Octave includes support for organizing data in structures. The current implementation
uses an associative array with indices limited to strings, but the syntax is more like C-style
structures.

6.1.1 Basic Usage and Examples

Here are some examples of using data structures in Octave.

Elements of structures can be of any value type. For example, the three expressions

x.a = 1;
x.b = [1, 2; 3, 4];
x.c = "string";

create a structure with three elements. The ‘.’ character separates the structure name
from the field name and indicates to Octave that this variable is a structure. To print the
value of the structure you can type its name, just as for any other variable:

X
= x =
{
a=1
b=
1 2
4
c = string
}

Note that Octave may print the elements in any order.

Structures may be copied just like any other variable:

102 GNU Octave (version 4.4.1)

y=xX
=y =
{
a=1
b=
1 2
4
c = string

Since structures are themselves values, structure elements may reference other structures.
The following statements change the value of the element b of the structure x to be a data
structure containing the single element d, which has a value of 3.

x.b
= ans =

¢ = string

Note that when Octave prints the value of a structure that contains other structures,
only a few levels are displayed. For example:

Chapter 6: Data Containers 103

a.b.c.d.e = 1;
a
= a =
{
b =
{
c =
{
1x1 struct array containing the fields:
d: 1x1 struct
b
X
b

This prevents long and confusing output from large deeply nested structures. The number
of levels to print for nested structures may be set with the function struct_levels_to_
print, and the function print_struct_array_contents may be used to enable printing
of the contents of structure arrays.

val = struct_levels_to_print ()

old_val = struct_levels_to_print (new_val)

struct_levels_to_print (new_val, "local")
Query or set the internal variable that specifies the number of structure levels to
display.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [print_struct_array_contents], page 103.
val = print_struct_array_contents ()
old_val = print_struct_array_contents (new_val)
print_struct_array_contents (new_val, "local")

Query or set the internal variable that specifies whether to print struct array contents.

If true, values of struct array elements are printed. This variable does not affect scalar
structures whose elements are always printed. In both cases, however, printing will
be limited to the number of levels specified by struct_levels_to_print.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [struct_levels_to_print], page 103.
Functions can return structures. For example, the following function separates the real

and complex parts of a matrix and stores them in two elements of the same structure
variable.

104 GNU Octave (version 4.4.1)

function y = £ (x)
y.re = real (x);
y.im = imag (x);

endfunction

When called with a complex-valued argument, £ returns the data structure containing
the real and imaginary parts of the original function argument.
f (rand (2) + rand (2) * I)
= ans =

{

im

0.26475 0.14828
0.18436 0.83669

re

0.040239 0.242160
0.238081 0.402523

}

Function return lists can include structure elements, and they may be indexed like any
other variable. For example:

[x.u, x.8(2:3,2:3), x.v] =svd ([1, 2; 3, 4]);

X
= X =
{
u=
-0.40455 -0.91451
-0.91451 0.40455
S=
0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597
V=
-0.57605 0.81742
-0.81742 -0.57605
}

It is also possible to cycle through all the elements of a structure in a loop, using a
special form of the for statement (see Section 10.5.1 [Looping Over Structure Elements],
page 171).

Chapter 6: Data Containers 105

6.1.2 Structure Arrays

A structure array is a particular instance of a structure, where each of the fields of the
structure is represented by a cell array. Each of these ce