
Using Data Tables in the GNU MathProg Modeling

Language

Andrew Makhorin Heinrich Schuchardt
<mao@gnu.org> <heinrich.schuchardt@gmx.de>

November, 2009

Abstract

This is a supplement to the document “Modeling Language GNU
MathProg”. It describes the table statement, which allows reading
data from external tables into model objects such as sets and param-
eters as well as writing data from the model to external tables.

Table statement

table name alias IN driver arg . . . arg :
set <- [fld , . . . , fld] , par ~ fld , . . . , par ~ fld ;

table name alias domain OUT driver arg . . . arg :
expr ~ fld , . . . , expr ~ fld ;

Where: name is a symbolic name of the table;
alias is an optional string literal which specifies the alias of the
table;
domain is an indexing expression which specifies the subscript do-
main of the (output) table;
IN is the keyword which means reading data from the input table;
OUT is the keyword which means writing data to the output table;
driver is a symbolic expression which specifies the name of the
driver used to access the table. (For details see Section “Table
drivers” below.)

1

arg is an optional symbolic expression which is an argument passed
to the table driver. This symbolic expression must not contain
dummy indices specified in the domain;
set is the name of an optional simple set called control set. It can
be omitted along with the delimiter ‘<-’;
fld is the field name. Within square brackets at least one field
should be specified. The field name following parameter name or
expression is optional and can be omitted along with the delimiter
‘~’, in which case the name of corresponding model object is used
as the field name;
par is the symbolic name of a model parameter;
expr is a numeric or symbolic expression.

Examples

table data IN "CSV" "data.csv":
s <- [FROM,TO], d~DISTANCE, c~COST;

table result{(f,t) in s} OUT "CSV" "result.csv":
f~FROM, t~TO, x[f,t]~FLOW;

The table statement allows reading data from a table into model objects
such as sets and (non-scalar) parameters as well as writing data from the
model to a table.

Table structure

The data table is an (unordered) set of records, where each record consists of
the same number of fields, and each field is provided with a unique symbolic
name called the field name. For example:

First Second Last
field field . . . field
↓ ↓ ↓

Table header →
First record →
Second record →

. . .

Last record →

FROM TO DISTANCE COST
Seattle New-York 2.5 0.12
Seattle Chicago 1.7 0.08
Seattle Topeka 1.8 0.09
San-Diego New-York 2.5 0.15
San-Diego Chicago 1.8 0.10
San-Diego Topeka 1.4 0.07

2

Reading data from input table

The input table statement causes reading data from the specified table
record by record.

Once a next record has been read, numeric or symbolic values of fields,
whose names are enclosed in square brackets in the table statement, are
gathered into n-tuple, and if the control set is specified in the table state-
ment, this n-tuple is added to it. Besides, a numeric or symbolic value of
each field associated with a model parameter is assigned to the parameter
member identified by subscripts, which are components of the n-tuple just
read.

For example, the following input table statement:

table data IN "...": s <- [FROM,TO], d~DISTANCE, c~COST;

causes reading values of four fields named FROM, TO, DISTANCE, and COST
from each record of the specified table. Values of fields FROM and TO give a
pair (f, t), which is added to the control set s. The value of field DISTANCE is
assigned to parameter member d[f, t], and the value of field COST is assigned
to parameter member c[f, t].

Note that the input table may contain extra fields whose names are
not specified in the table statement, in which case values of these fields on
reading the table are ignored.

Writing data to output table

The output table statement causes writing data to the specified table. Note
that some drivers (namely, CSV and xBASE) destroy the output table before
writing data, i.e. delete all its existing records.

Each n-tuple in the specified domain set generates one record written to
the output table. Values of fields are numeric or symbolic values of corre-
sponding expressions specified in the table statement. These expressions are
evaluated for each n-tuple in the domain set and, thus, may include dummy
indices introduced in the corresponding indexing expression.

For example, the following output table statement:

table result{(f,t) in s} OUT "...": f~FROM, t~TO, x[f,t]~FLOW;

causes writing records, by one record for each pair (f, t) in set s, to the
output table, where each record consists of three fields named FROM, TO, and
FLOW. The values written to fields FROM and TO are current values of dummy
indices f and t, and the value written to field FLOW is a value of member
x[f, t] of corresponding subscripted parameter or variable.

3

Table drivers

The table driver is a program module which provides transmitting data
between MathProg model objects and data tables.

Currently the GLPK package has four table drivers:
• built-in CSV table driver;
• built-in xBASE table driver;
• ODBC table driver;
• MySQL table driver.

CSV table driver

The CSV table driver assumes that the data table is represented in the
form of a plain text file in the CSV (comma-separated values) file format as
described below.

To choose the CSV table driver its name in the table statement should
be specified as "CSV", and the only argument should specify the name of a
plain text file containing the table. For example:

table data IN "CSV" "data.csv": ... ;

The filename suffix may be arbitrary, however, it is recommended to use
the suffix ‘.csv’.

On reading input tables the CSV table driver provides an implicit field
named RECNO, which contains the current record number. This field can be
specified in the input table statement as if there were the actual field having
the name RECNO in the CSV file. For example:

table list IN "CSV" "list.csv": num <- [RECNO], ... ;

CSV format1

The CSV (comma-separated values) format is a plain text file format defined
as follows.

1. Each record is located on a separate line, delimited by a line break.
For example:

aaa,bbb,ccc\n
xxx,yyy,zzz\n

where ‘\n’ means the control character LF (0x0A).
1This material is based on the RFC document 4180.

4

2. The last record in the file may or may not have an ending line break.
For example:

aaa,bbb,ccc\n
xxx,yyy,zzz

3. There should be a header line appearing as the first line of the file in
the same format as normal record lines. This header should contain names
corresponding to the fields in the file. The number of field names in the
header line should be the same as the number of fields in the records of the
file. For example:

name1,name2,name3\n
aaa,bbb,ccc\n
xxx,yyy,zzz\n

4. Within the header and each record there may be one or more fields
separated by commas. Each line should contain the same number of fields
throughout the file. Spaces are considered as part of a field and therefore
not ignored. The last field in the record should not be followed by a comma.
For example:

aaa,bbb,ccc\n

5. Fields may or may not be enclosed in double quotes. For example:

"aaa","bbb","ccc"\n
zzz,yyy,xxx\n

6. If a field is enclosed in double quotes, each double quote which is part
of the field should be coded twice. For example:

"aaa","b""bb","ccc"\n

The following is a complete example of the data table in CSV format:

FROM,TO,DISTANCE,COST
Seattle,New-York,2.5,0.12
Seattle,Chicago,1.7,0.08
Seattle,Topeka,1.8,0.09
San-Diego,New-York,2.5,0.15
San-Diego,Chicago,1.8,0.10
San-Diego,Topeka,1.4,0.07

5

xBASE table driver

The xBASE table driver assumes that the data table is stored in the .dbf
file format.

To choose the xBASE table driver its name in the table statement should
be specified as "xBASE", and the first argument should specify the name of
a .dbf file containing the table. For the output table there should be the
second argument defining the table format in the form "FF...F", where F is
either C(n), which specifies a character field of length n, or N(n[,p]), which
specifies a numeric field of length n and precision p (by default p is 0).

The following is a simple example which illustrates creating and reading
a .dbf file:

table tab1{i in 1..10} OUT "xBASE" "foo.dbf"
"N(5)N(10,4)C(1)C(10)": 2*i+1 ~ B, Uniform(-20,+20) ~ A,
"?" ~ FOO, "[" & i & "]" ~ C;

set S, dimen 4;
table tab2 IN "xBASE" "foo.dbf": S <- [B, C, RECNO, A];
display S;
end;

ODBC table driver

The ODBC table driver allows connecting to SQL databases using an imple-
mentation of the ODBC interface based on the Call Level Interface (CLI).2

Debian GNU/Linux. Under Debian GNU/Linux the ODBC table driver
uses the iODBC package,3 which should be installed before building the
GLPK package. The installation can be effected with the following com-
mand:

sudo apt-get install libiodbc2-dev

Note that on configuring the GLPK package to enable using the iODBC
library the option ‘--enable-odbc’ should be passed to the configure script.

The individual databases must be entered for systemwide usage in
/etc/odbc.ini and /etc/odbcinst.ini. Database connections to be used
by a single user are specified by files in the home directory (.odbc.ini and
.odbcinst.ini).

2The corresponding software standard is defined in ISO/IEC 9075-3:2003.
3See <http://www.iodbc.org/>.

6

Microsoft Windows. Under Microsoft Windows the ODBC table driver
uses the Microsoft ODBC library. To enable this feature the symbol:

#define ODBC_DLNAME "odbc32.dll"

should be defined in the GLPK configuration file ‘config.h’.
Data sources can be created via the Administrative Tools from the Con-

trol Panel.

To choose the ODBC table driver its name in the table statement should
be specified as ’ODBC’ or ’iODBC’.

The argument list is specified as follows.
The first argument is the connection string passed to the ODBC library,

for example:
’DSN=glpk;UID=user;PWD=password’, or
’DRIVER=MySQL;DATABASE=glpkdb;UID=user;PWD=password’.
Different parts of the string are separated by semicolons. Each part

consists of a pair fieldname and value separated by the equal sign. Allowable
fieldnames depend on the ODBC library. Typically the following fieldnames
are allowed:

DATABASE database;
DRIVER ODBC driver;
DSN name of a data source;
FILEDSN name of a file data source;
PWD user password;
SERVER database;
UID user name.
The second argument and all following are considered to be SQL state-

ments
SQL statements may be spread over multiple arguments. If the last

character of an argument is a semicolon this indicates the end of a SQL
statement.

The arguments of a SQL statement are concatenated separated by space.
The eventual trailing semicolon will be removed.

All but the last SQL statement will be executed directly.
For IN-table the last SQL statement can be a SELECT command start-

ing with the capitalized letters ’SELECT ’. If the string does not start with
’SELECT ’ it is considered to be a table name and a SELECT statement is
automatically generated.

7

For OUT-table the last SQL statement can contain one or multiple ques-
tion marks. If it contains a question mark it is considered a template for
the write routine. Otherwise the string is considered a table name and an
INSERT template is automatically generated.

The writing routine uses the template with the question marks and re-
places the first question mark by the first output parameter, the second
question mark by the second output parameter and so forth. Then the SQL
command is issued.

The following is an example of the output table statement:

table ta { l in LOCATIONS } OUT
’ODBC’
’DSN=glpkdb;UID=glpkuser;PWD=glpkpassword’
’DROP TABLE IF EXISTS result;’
’CREATE TABLE result (ID INT, LOC VARCHAR(255), QUAN DOUBLE);’
’INSERT INTO result ’VALUES (4, ?, ?)’ :
l ~ LOC, quantity[l] ~ QUAN;

Alternatively it could be written as follows:

table ta { l in LOCATIONS } OUT
’ODBC’
’DSN=glpkdb;UID=glpkuser;PWD=glpkpassword’
’DROP TABLE IF EXISTS result;’
’CREATE TABLE result (ID INT, LOC VARCHAR(255), QUAN DOUBLE);’
’result’ :
l ~ LOC, quantity[l] ~ QUAN, 4 ~ ID;

Using templates with ‘?’ supports not only INSERT, but also UPDATE,
DELETE, etc. For example:

table ta { l in LOCATIONS } OUT
’ODBC’
’DSN=glpkdb;UID=glpkuser;PWD=glpkpassword’
’UPDATE result SET DATE = ’ & date & ’ WHERE ID = 4;’
’UPDATE result SET QUAN = ? WHERE LOC = ? AND ID = 4’ :
quantity[l], l;

MySQL table driver

The MySQL table driver allows connecting to MySQL databases.

Debian GNU/Linux. Under Debian GNU/Linux the MySQL table
driver uses the MySQL package,4 which should be installed before build-

4For download development files see <http://dev.mysql.com/downloads/mysql/>.

8

ing the GLPK package. The installation can be effected with the following
command:

sudo apt-get install libmysqlclient15-dev

Note that on configuring the GLPK package to enable using the MySQL
library the option ‘--enable-mysql’ should be passed to the configure script.

Microsoft Windows. Under Microsoft Windows the MySQL table driver
also uses the MySQL library. To enable this feature the symbol:

#define MYSQL_DLNAME "libmysql.dll"

should be defined in the GLPK configuration file ‘config.h’.

To choose the MySQL table driver its name in the table statement should
be specified as ’MySQL’.

The argument list is specified as follows.
The first argument specifies how to connect the data base in the DSN

style, for example:
’Database=glpk;UID=glpk;PWD=gnu’.
Different parts of the string are separated by semicolons. Each part

consists of a pair fieldname and value separated by the equal sign. The
following fieldnames are allowed:

Server server running the database (defaulting to localhost);
Database name of the database;
UID user name;
PWD user password;
Port port used by the server (defaulting to 3306).
The second argument and all following are considered to be SQL state-

ments
SQL statements may be spread over multiple arguments. If the last

character of an argument is a semicolon this indicates the end of a SQL
statement.

The arguments of a SQL statement are concatenated separated by space.
The eventual trailing semicolon will be removed.

All but the last SQL statement will be executed directly.
For IN-table the last SQL statement can be a SELECT command start-

ing with the capitalized letters ’SELECT ’. If the string does not start with
’SELECT ’ it is considered to be a table name and a SELECT statement is
automatically generated.

9

For OUT-table the last SQL statement can contain one or multiple ques-
tion marks. If it contains a question mark it is considered a template for
the write routine. Otherwise the string is considered a table name and an
INSERT template is automatically generated.

The writing routine uses the template with the question marks and re-
places the first question mark by the first output parameter, the second
question mark by the second output parameter and so forth. Then the SQL
command is issued.

The following is an example of the output table statement:

table ta { l in LOCATIONS } OUT
’MySQL’
’Database=glpkdb;UID=glpkuser;PWD=glpkpassword’
’DROP TABLE IF EXISTS result;’
’CREATE TABLE result (ID INT, LOC VARCHAR(255), QUAN DOUBLE);’
’INSERT INTO result VALUES (4, ?, ?)’ :
l ~ LOC, quantity[l] ~ QUAN;

Alternatively it could be written as follows:

table ta { l in LOCATIONS } OUT
’MySQL’
’Database=glpkdb;UID=glpkuser;PWD=glpkpassword’
’DROP TABLE IF EXISTS result;’
’CREATE TABLE result (ID INT, LOC VARCHAR(255), QUAN DOUBLE);’
’result’ :
l ~ LOC, quantity[l] ~ QUAN, 4 ~ ID;

Using templates with ‘?’ supports not only INSERT, but also UPDATE,
DELETE, etc. For example:

table ta { l in LOCATIONS } OUT
’MySQL’
’Database=glpkdb;UID=glpkuser;PWD=glpkpassword’
’UPDATE result SET DATE = ’ & date & ’ WHERE ID = 4;’
’UPDATE result SET QUAN = ? WHERE LOC = ? AND ID = 4’ :
quantity[l], l;

10

